cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000004 The zero sequence.

This page as a plain text file.
%I A000004 M0000 #128 Jan 13 2023 09:26:26
%S A000004 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T A000004 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U A000004 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%N A000004 The zero sequence.
%H A000004 N. J. A. Sloane, <a href="/A000004/b000004.txt">Table of n, a(n) for n = 0..1000</a> [Useful when <a href="/plot2.html">plotting one sequence against another</a>.]
%H A000004 Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
%H A000004 N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 10.
%H A000004 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H A000004 <a href="/index/Cor#core">Index entries for "core" sequences</a>
%H A000004 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%H A000004 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>
%F A000004 a(n) = 0 for all integer n.
%p A000004 A000004 := n->0;
%t A000004 a[ n_] := 0;
%t A000004 Table[0, {n, 100}] (* _Matthew House_, Jul 14 2015 *)
%t A000004 LinearRecurrence[{1},{0},102] (* _Ray Chandler_, Jul 15 2015 *)
%o A000004 (Magma) [ 0 : n in [0..100]];
%o A000004 (PARI) vector(100,n,0)
%o A000004 (R) rep(0,100)
%o A000004 (Haskell)
%o A000004 a000004 = const 0
%o A000004 a000004_list = repeat 0  -- _Reinhard Zumkeller_, May 07 2012
%o A000004 (Python) print([0 for n in range(102)]) # _Michael S. Branicky_, Apr 04 2022
%Y A000004 Cf. A000012 (all 1's), A007395 (all 2's), A010701 (all 3's).
%Y A000004 Cf. A000007(n) = 0^n: characteristic function of {0}.
%K A000004 core,easy,nonn,mult
%O A000004 0,1
%A A000004 _N. J. A. Sloane_