cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000006 Integer part of square root of n-th prime.

This page as a plain text file.
%I A000006 M0259 N0092 #51 Jun 25 2020 15:04:53
%S A000006 1,1,2,2,3,3,4,4,4,5,5,6,6,6,6,7,7,7,8,8,8,8,9,9,9,10,10,10,10,10,11,
%T A000006 11,11,11,12,12,12,12,12,13,13,13,13,13,14,14,14,14,15,15,15,15,15,15,
%U A000006 16,16,16,16,16,16,16,17,17,17,17,17,18,18,18,18,18
%N A000006 Integer part of square root of n-th prime.
%C A000006 Conjecture: No two successive terms in the sequence differ by more than 1. Proof of this would prove the converse of the theorem that every prime is surrounded by two consecutive squares, namely |sqrt(p)|^2 and (|sqrt(p)|+1)^2. - _Cino Hilliard_, Jan 22 2003
%C A000006 Equals the number of squares less than prime(n). Cf. A014689. - _Zak Seidov_ Nov 04 2007
%C A000006 The above conjecture is Legendre's conjecture that for n > 0 there is always a prime between n^2 and (n+1)^2. See A014085, number of primes between two consecutive squares, which is also the number of times n is repeated in the present sequence. - _Jean-Christophe Hervé_, Oct 25 2013
%D A000006 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
%D A000006 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000006 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000006 T. D. Noe, <a href="/A000006/b000006.txt">Table of n, a(n) for n = 1..10000</a>
%H A000006 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A000006 Matthew Parker, <a href="https://oeis.org/A000006/a000006_100M.7z">The first 100 million terms (7-Zip compressed file)</a>
%F A000006 a(n) = A000196(A000040(n)). - _Reinhard Zumkeller_, Mar 24 2012
%t A000006 a[n_] := IntegerPart[Sqrt[Prime[n]]]
%t A000006 IntegerPart[Sqrt[#]]&/@Prime[Range[80]] (* _Harvey P. Dale_, Mar 06 2012 *)
%o A000006 (PARI) (a(n)=sqrtint(prime(n))); vector(100,n,a(n)) \\ Edited by _M. F. Hasler_, Oct 19 2018
%o A000006 (PARI) apply(sqrtint,primes(100)) \\ _Charles R Greathouse IV_, Apr 26 2012
%o A000006 (PARI) apply( A000006=n->sqrtint(prime(n)), [1..100]) \\ _M. F. Hasler_, Oct 19 2018
%o A000006 (Haskell) a000006 = a000196 . a000040  -- _Reinhard Zumkeller_, Mar 24 2012
%o A000006 (Python)
%o A000006 from sympy import sieve
%o A000006 A000006 = lambda n: int(sieve[n]**.5)
%o A000006 print([A000006(n) for n in range(1,100+1)])
%o A000006 # _Albert Lahat_, Jun 25 2020
%Y A000006 Cf. A014085.
%Y A000006 See also A263846 (floor of cube root of prime(n)), A000196 (floor of sqrt(n)), A048766 (floor of cube root of n).
%K A000006 nonn,easy,nice
%O A000006 1,3
%A A000006 _N. J. A. Sloane_