This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000062 M0948 N0355 #41 Jul 02 2025 16:01:53 %S A000062 1,2,4,5,6,8,9,11,12,13,15,16,18,19,20,22,23,25,26,27,29,30,32,33,34, %T A000062 36,37,38,40,41,43,44,45,47,48,50,51,52,54,55,57,58,59,61,62,64,65,66, %U A000062 68,69,71,72,73,75,76,77,79,80,82,83,84,86,87,89,90,91,93,94,96,97,98 %N A000062 A Beatty sequence: a(n) = floor(n/(e-2)). %D A000062 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000062 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000062 Christian G. Bower, <a href="/A000062/b000062.txt">Table of n, a(n) for n = 1..1000</a> %H A000062 I. G. Connell, <a href="http://dx.doi.org/10.4153/CMB-1959-025-0">Some properties of Beatty sequences I</a>, Canad. Math. Bull., 2 (1959), 190-197. %H A000062 I. G. Connell, <a href="http://dx.doi.org/10.4153/CMB-1960-004-2">Some properties of Beatty sequences II</a>, Canad. Math. Bull., 3 (1960), 17-22. %H A000062 J. Lambek and L. Moser, <a href="http://www.jstor.org/stable/2308078">Inverse and complementary sequences of natural numbers</a>, Amer. Math. Monthly, 61 (1954), 454-458. %H A000062 J. Lambek and L. Moser, <a href="http://dx.doi.org/10.4153/CMB-1959-013-x">On some two way classifications of integers</a>, Canad. Math. Bull. 2 (1959), 85-89. %H A000062 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %p A000062 for n from 1 to 200 do printf(`%d,`,floor( n/(exp(1)-2))) od: %t A000062 Table[Floor[n/(E-2)],{n,100}] (* _Vladimir Joseph Stephan Orlovsky_, Jan 24 2012 *) %o A000062 (PARI) a(n)=floor( n/(exp(1)-2) ) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 11 2008 %o A000062 (Magma) [Floor( n/(Exp(1)-2) ): n in [1..80]]; // _Vincenzo Librandi_, Mar 27 2015 %Y A000062 Cf. A194807 (1/(e-2)). %K A000062 nonn %O A000062 1,2 %A A000062 _N. J. A. Sloane_ %E A000062 More terms from _James Sellers_, Feb 19 2001