A000063 Symmetrical dissections of an n-gon.
1, 1, 2, 4, 5, 14, 14, 39, 42, 132, 132, 424, 429, 1428, 1430, 4848, 4862, 16796, 16796, 58739, 58786, 208012, 208012, 742768, 742900, 2674426, 2674440, 9694416, 9694845, 35357670, 35357670, 129643318, 129644790, 477638700, 477638700, 1767258328, 1767263190, 6564120288
Offset: 5
Keywords
References
- R. K. Guy, Dissecting a polygon into triangles, Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Joseph Myers, Table of n, a(n) for n = 5..1000
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
Programs
-
Mathematica
c[n_Integer] := CatalanNumber[n]; c[] = 0; a[n] := c[Floor[n/2]-1] - c[n/4-1] - c[n/6-1]; Array[a, 40, 5] (* Jean-François Alcover, Feb 03 2016, after Joseph Myers *)
-
PARI
C(n)=if(type(n)==type(1), binomial(2*n,n)/(n+1), 0); a(n)=C(floor(n/2)-1) - C(n/4-1) - C(n/6-1); vector(66,n, a(n+4)) \\ Joerg Arndt, Aug 31 2014
Formula
a(2n+3) = A000108(n), n>0. - M. F. Hasler, Mar 25 2012
a(n) = Catalan(floor(n/2) - 1) - Catalan(n/4 - 1) - Catalan (n/6 - 1), where Catalan(x) = 0 for noninteger x (from Guy's 1958 paper). - Joseph Myers, Jun 21 2012
Extensions
Extended by Joseph Myers, Jun 21 2012
Comments