cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000091 Multiplicative with a(2^e) = 2 for k >= 1; a(3) = 2, a(3^e) = 0 for k >= 2; a(p^e) = 0 if p > 3 and p == -1 (mod 3); a(p^e) = 2 if p > 3 and p == 1 (mod 3).

Original entry on oeis.org

1, 2, 2, 2, 0, 4, 2, 2, 0, 0, 0, 4, 2, 4, 0, 2, 0, 0, 2, 0, 4, 0, 0, 4, 0, 4, 0, 4, 0, 0, 2, 2, 0, 0, 0, 0, 2, 4, 4, 0, 0, 8, 2, 0, 0, 0, 0, 4, 2, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 0, 2, 4, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 4, 0, 4, 0, 8, 2, 0, 0, 0, 0, 8, 0, 4, 0, 0, 0, 0, 4, 0, 4, 0, 0, 4, 2, 4, 0, 0, 0, 0, 2, 4, 0
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    A000091 := proc(n) local b,d,nt,c; if n = 1 then RETURN(1); fi; c := 1; if n mod 2 = 0 then c := c*2; fi; if n mod 3 = 0 then c := c*2; fi; nt := n; while nt mod 2 = 0 do nt := nt/2; od; while nt mod 3 = 0 do nt := nt/3; od; if irem(n,9) = 0 then RETURN(0); fi; b := 1; for d from 3 to nt do if irem(nt,d) = 0 and isprime(d) then b := b*(1+legendre(-3,d)); fi; od; RETURN(b*c); end;
  • Mathematica
    a[1] = 1; a[n_] := Block[{b, d, nt, c = 1}, If[Mod[n, 2] == 0, c = c*2]; If[Mod[n, 3] == 0, c = c*2]; nt = n; While[ Mod[nt, 2] == 0, nt = nt/2]; While[ Mod[nt, 3] == 0, nt = nt/3]; If[Mod[n, 9] == 0, Return[0]]; b = 1; For[d = 3, d <= nt, d++, If[Mod[nt, d] == 0 && PrimeQ[d], b = b*(1+JacobiSymbol[-3, d])]]; Return[b*c]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 06 2012, after Maple *)

Extensions

Description corrected Mar 02 2004. (The old description defined A000086, not this sequence.)