cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000101 Record gaps between primes (upper end) (compare A002386, which gives lower ends of these gaps).

This page as a plain text file.
%I A000101 M2485 N0984 #160 Feb 16 2025 08:32:19
%S A000101 3,5,11,29,97,127,541,907,1151,1361,9587,15727,19661,31469,156007,
%T A000101 360749,370373,492227,1349651,1357333,2010881,4652507,17051887,
%U A000101 20831533,47326913,122164969,189695893,191913031,387096383,436273291,1294268779
%N A000101 Record gaps between primes (upper end) (compare A002386, which gives lower ends of these gaps).
%C A000101 See A002386 for complete list of known terms and further references.
%C A000101 Except for a(1)=3 and a(2)=5, a(n) = A168421(k). Primes 3 and 5 are special in that they are the only primes which do not have a Ramanujan prime between them and their double, <= 6 and 10 respectively. Because of the large size of a gap, there are many repeats of the prime number in A168421. - _John W. Nicholson_, Dec 10 2013
%D A000101 B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 133.
%D A000101 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000101 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000101 Brian Kehrig, <a href="/A000101/b000101.txt">Table of n, a(n) for n = 1..83</a> (first 75 terms from Alex Beveridge and M. F. Hasler, terms n=76..80 added by John W. Nicholson)
%H A000101 Jens Kruse Andersen and Norman Luhn, <a href="https://www.pzktupel.de/JensKruseAndersen/risinggap.php">Record Prime Gaps</a>
%H A000101 Alex Beveridge, <a href="/A000101/a000101_1.txt">Table giving known values of A000101(n), A005250(n), A107578(n)</a>
%H A000101 Andrew Booker, <a href="https://t5k.org/nthprime/">The Nth Prime Page</a>
%H A000101 Harald Cramer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa2/aa212.pdf">On the order of magnitude of the difference between consecutive prime numbers</a>, Acta Arith. 2 (1936), 396-403.
%H A000101 Kevin Ford, Ben Green, Sergei Konyagin, James Maynard, and Terence Tao, <a href="http://arxiv.org/abs/1412.5029">Long gaps between primes</a>, arXiv:1412.5029 [math.NT], 2014-2016.
%H A000101 Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053 [math.NT], 2013.
%H A000101 Alexei Kourbatov and Marek Wolf, <a href="https://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
%H A000101 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/gaps/gaplist.html"> First occurrence prime gaps</a>
%H A000101 Thomas R. Nicely, <a href="/A000101/a000101.pdf">First occurrence prime gaps</a> [Local copy, pdf only]
%H A000101 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/index.html">Some Results of Computational Research in Prime Numbers</a> [See local copy in A007053]
%H A000101 Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/hobbies.html">Computational projects</a>
%H A000101 Tomás Oliveira e Silva, Siegfried Herzog and Silvio Pardi, <a href="https://doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060.
%H A000101 Daniel Shanks, <a href="http://www.jstor.org/stable/2002951">On maximal gaps between successive primes</a>, Math. Comp., 18 (1964), 646-651.
%H A000101 Matt Visser, <a href="https://arxiv.org/abs/1904.00499">Verifying the Firoozbakht, Nicholson, and Farhadian conjectures up to the 81st maximal prime gap</a>, arXiv:1904.00499 [math.NT], 2019.
%H A000101 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeGaps.html">Prime Gaps</a>
%H A000101 Wikipedia, <a href="https://en.wikipedia.org/wiki/Prime_gap">Prime gap</a>
%H A000101 Robert G. Wilson v, <a href="/A005250/a005250.pdf">Notes (no date)</a>
%H A000101 Marek Wolf, <a href="http://arxiv.org/abs/1010.3945">A Note on the Andrica Conjecture</a>, arXiv:1010.3945 [math.NT], 2010.
%H A000101 J. Young and A. Potler, <a href="http://www.jstor.org/stable/2008665">First occurrence prime gaps</a>, Math. Comp., 52 (1989), 221-224.
%H A000101 <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>
%F A000101 a(n) = A002386(n) + A005250(n) = A008995(n-1) + 1. - _M. F. Hasler_, Dec 13 2007
%t A000101 s = {3}; gm = 1; Do[p = Prime[n + 1]; g = p - Prime[n]; If[g > gm, Print[p]; AppendTo[s, p]; gm = g], {n, 2, 1000000}]; s  (* _Jean-François Alcover_, Mar 31 2011 *)
%o A000101 (PARI) p=q=2;g=0;until( g<(q=nextprime(1+p=q))-p & print1(p+g=q-p,","),) \\ _M. F. Hasler_, Dec 13 2007
%Y A000101 Cf. A000040, A001223 (differences between primes), A002386 (lower ends), A005250 (record gaps), A107578.
%Y A000101 Cf. also A005669, A111943.
%K A000101 nonn,nice
%O A000101 1,1
%A A000101 _N. J. A. Sloane_