cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).

This page as a plain text file.
%I A000108 M1459 N0577 #2121 Aug 20 2025 10:54:28
%S A000108 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,
%T A000108 9694845,35357670,129644790,477638700,1767263190,6564120420,
%U A000108 24466267020,91482563640,343059613650,1289904147324,4861946401452,18367353072152,69533550916004,263747951750360,1002242216651368,3814986502092304
%N A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).
%C A000108 These were formerly sometimes called Segner numbers.
%C A000108 A very large number of combinatorial interpretations are known - see references, esp. R. P. Stanley, "Catalan Numbers", Cambridge University Press, 2015. This is probably the longest entry in the OEIS, and rightly so.
%C A000108 The solution to Schröder's first problem: number of ways to insert n pairs of parentheses in a word of n+1 letters. E.g., for n=2 there are 2 ways: ((ab)c) or (a(bc)); for n=3 there are 5 ways: ((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).
%C A000108 Consider all the binomial(2n,n) paths on squared paper that (i) start at (0, 0), (ii) end at (2n, 0) and (iii) at each step, either make a (+1,+1) step or a (+1,-1) step. Then the number of such paths that never go below the x-axis (Dyck paths) is C(n). [Chung-Feller]
%C A000108 Number of noncrossing partitions of the n-set. For example, of the 15 set partitions of the 4-set, only [{13},{24}] is crossing, so there are a(4)=14 noncrossing partitions of 4 elements. - _Joerg Arndt_, Jul 11 2011
%C A000108 Noncrossing partitions are partitions of genus 0. - _Robert Coquereaux_, Feb 13 2024
%C A000108 a(n-1) is the number of ways of expressing an n-cycle (123...n) in the symmetric group S_n as a product of n-1 transpositions (u_1,v_1)*(u_2,v_2)*...*(u_{n-1},v_{n-1}) where u_i<v_i and u_k <= u_j for k < j; see example.  If the condition is dropped, one obtains A000272. - _Joerg Arndt_ and Greg Stevenson, Jul 11 2011
%C A000108 a(n) is the number of ordered rooted trees with n nodes, not including the root. See the Conway-Guy reference where these rooted ordered trees are called plane bushes. See also the Bergeron et al. reference, Example 4, p. 167. - _Wolfdieter Lang_, Aug 07 2007
%C A000108 As shown in the paper from Beineke and Pippert (1971), a(n-2)=D(n) is the number of labeled dissections of a disk, related to the number R(n)=A001761(n-2) of labeled planar 2-trees having n vertices and rooted at a given exterior edge, by the formula D(n)=R(n)/(n-2)!. - _M. F. Hasler_, Feb 22 2012
%C A000108 Shifts one place left when convolved with itself.
%C A000108 For n >= 1, a(n) is also the number of rooted bicolored unicellular maps of genus 0 on n edges. - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 15 2001
%C A000108 Number of ways of joining 2n points on a circle to form n nonintersecting chords. (If no such restriction imposed, then the number of ways of forming n chords is given by (2n-1)!! = (2n)!/(n!*2^n) = A001147(n).)
%C A000108 Arises in Schubert calculus - see Sottile reference.
%C A000108 Inverse Euler transform of sequence is A022553.
%C A000108 With interpolated zeros, the inverse binomial transform of the Motzkin numbers A001006. - _Paul Barry_, Jul 18 2003
%C A000108 The Hankel transforms of this sequence or of this sequence with the first term omitted give A000012 = 1, 1, 1, 1, 1, 1, ...; example: Det([1, 1, 2, 5; 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132]) = 1 and Det([1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429]) = 1. - _Philippe Deléham_, Mar 04 2004
%C A000108 a(n) equals the sum of squares of terms in row n of triangle A053121, which is formed from successive self-convolutions of the Catalan sequence. - _Paul D. Hanna_, Apr 23 2005
%C A000108 Also coefficients of the Mandelbrot polynomial M iterated an infinite number of times. Examples: M(0) = 0 = 0*c^0 = [0], M(1) = c = c^1 + 0*c^0 = [1 0], M(2) = c^2 + c = c^2 + c^1 + 0*c^0 = [1 1 0], M(3) = (c^2 + c)^2 + c = [0 1 1 2 1], ... ... M(5) = [0 1 1 2 5 14 26 44 69 94 114 116 94 60 28 8 1], ... - Donald D. Cross (cosinekitty(AT)hotmail.com), Feb 04 2005
%C A000108 The multiplicity with which a prime p divides C_n can be determined by first expressing n+1 in base p. For p=2, the multiplicity is the number of 1 digits minus 1. For p an odd prime, count all digits greater than (p+1)/2; also count digits equal to (p+1)/2 unless final; and count digits equal to (p-1)/2 if not final and the next digit is counted. For example, n=62, n+1 = 223_5, so C_62 is not divisible by 5. n=63, n+1 = 224_5, so 5^3 | C_63. - _Franklin T. Adams-Watters_, Feb 08 2006
%C A000108 Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are a(2) = 2 and a(3) = 5. Is the only semiprime Catalan number a(4) = 14? - _Jonathan Vos Post_, Mar 06 2006
%C A000108 The answer is yes. Using the formula C_n = binomial(2n,n)/(n+1), it is immediately clear that C_n can have no prime factor greater than 2n. For n >= 7, C_n > (2n)^2, so it cannot be a semiprime. Given that the Catalan numbers grow exponentially, the above consideration implies that the number of prime divisors of C_n, counted with multiplicity, must grow without limit. The number of distinct prime divisors must also grow without limit, but this is more difficult. Any prime between n+1 and 2n (exclusive) must divide C_n. That the number of such primes grows without limit follows from the prime number theorem. - _Franklin T. Adams-Watters_, Apr 14 2006
%C A000108 The number of ways to place n indistinguishable balls in n numbered boxes B1,...,Bn such that at most a total of k balls are placed in boxes B1,...,Bk for k=1,...,n. For example, a(3)=5 since there are 5 ways to distribute 3 balls among 3 boxes such that (i) box 1 gets at most 1 ball and (ii) box 1 and box 2 together get at most 2 balls:(O)(O)(O), (O)()(OO), ()(OO)(O), ()(O)(OO), ()()(OOO). - _Dennis P. Walsh_, Dec 04 2006
%C A000108 a(n) is also the order of the semigroup of order-decreasing and order-preserving full transformations (of an n-element chain) - now known as the Catalan monoid. - _Abdullahi Umar_, Aug 25 2008
%C A000108 a(n) is the number of trivial representations in the direct product of 2n spinor (the smallest) representations of the group SU(2) (A(1)). - Rutger Boels (boels(AT)nbi.dk), Aug 26 2008
%C A000108 The invert transform appears to converge to the Catalan numbers when applied infinitely many times to any starting sequence. - _Mats Granvik_, _Gary W. Adamson_ and _Roger L. Bagula_, Sep 09 2008, Sep 12 2008
%C A000108 Limit_{n->oo} a(n)/a(n-1) = 4. - Francesco Antoni (francesco_antoni(AT)yahoo.com), Nov 24 2008
%C A000108 Starting with offset 1 = row sums of triangle A154559. - _Gary W. Adamson_, Jan 11 2009
%C A000108 C(n) is the degree of the Grassmannian G(1,n+1): the set of lines in (n+1)-dimensional projective space, or the set of planes through the origin in (n+2)-dimensional affine space. The Grassmannian is considered a subset of N-dimensional projective space, N = binomial(n+2,2) - 1. If we choose 2n general (n-1)-planes in projective (n+1)-space, then there are C(n) lines that meet all of them. - Benji Fisher (benji(AT)FisherFam.org), Mar 05 2009
%C A000108 Starting with offset 1 = A068875: (1, 2, 4, 10, 18, 84, ...) convolved with Fine numbers, A000957: (1, 0, 1, 2, 6, 18, ...). a(6) = 132 = (1, 2, 4, 10, 28, 84) dot (18, 6, 2, 1, 0, 1) = (18 + 12 + 8 + 10 + 0 + 84) = 132. - _Gary W. Adamson_, May 01 2009
%C A000108 Convolved with A032443: (1, 3, 11, 42, 163, ...) = powers of 4, A000302: (1, 4, 16, ...). - _Gary W. Adamson_, May 15 2009
%C A000108 Sum_{k>=1} C(k-1)/2^(2k-1) = 1. The k-th term in the summation is the probability that a random walk on the integers (beginning at the origin) will arrive at positive one (for the first time) in exactly (2k-1) steps. - _Geoffrey Critzer_, Sep 12 2009
%C A000108 C(p+q)-C(p)*C(q) = Sum_{i=0..p-1, j=0..q-1} C(i)*C(j)*C(p+q-i-j-1). - _Groux Roland_, Nov 13 2009
%C A000108 Leonhard Euler used the formula C(n) = Product_{i=3..n} (4*i-10)/(i-1) in his 'Betrachtungen, auf wie vielerley Arten ein gegebenes polygonum durch Diagonallinien in triangula zerschnitten werden könne' and computes by recursion C(n+2) for n = 1..8. (Berlin, 4th September 1751, in a letter to Goldbach.) - _Peter Luschny_, Mar 13 2010
%C A000108 Let A179277 = A(x). Then C(x) is satisfied by A(x)/A(x^2). - _Gary W. Adamson_, Jul 07 2010
%C A000108 a(n) is also the number of quivers in the mutation class of type B_n or of type C_n. - _Christian Stump_, Nov 02 2010
%C A000108 From _Matthew Vandermast_, Nov 22 2010: (Start)
%C A000108 Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions: 1. No two colors are chosen the same positive number of times. 2. For any two colors (c, d) that are chosen at least once, color c is chosen more times than color d iff color c appears more times in the original set than color d.
%C A000108 If the second requirement is lifted, the number of acceptable ways equals A000110(n+1). See related comments for A016098, A085082. (End)
%C A000108 Deutsch and Sagan prove the Catalan number C_n is odd if and only if n = 2^a - 1 for some nonnegative integer a. Lin proves for every odd Catalan number C_n, we have C_n == 1 (mod 4). - _Jonathan Vos Post_, Dec 09 2010
%C A000108 a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that f(1)=1 and for all n >= 1 f(n+1) <= f(n)+1. For a nice bijection between this set of functions and the set of length 2n Dyck words, see page 333 of the Fxtbook (see link below). - _Geoffrey Critzer_, Dec 16 2010
%C A000108 Postnikov (2005) defines "generalized Catalan numbers" associated with buildings (e.g., Catalan numbers of Type B, see A000984). - _N. J. A. Sloane_, Dec 10 2011
%C A000108 Number of permutations in S(n) for which length equals depth. - _Bridget Tenner_, Feb 22 2012
%C A000108 a(n) is also the number of standard Young tableau of shape (n,n). - _Thotsaporn Thanatipanonda_, Feb 25 2012
%C A000108 a(n) is the number of binary sequences of length 2n+1 in which the number of ones first exceed the number of zeros at entry 2n+1. See the example below in the example section. - _Dennis P. Walsh_, Apr 11 2012
%C A000108 Number of binary necklaces of length 2*n+1 containing n 1's (or, by symmetry, 0's). All these are Lyndon words and their representatives (as cyclic maxima) are the binary Dyck words. - _Joerg Arndt_, Nov 12 2012
%C A000108 Number of sequences consisting of n 'x' letters and n 'y' letters such that (counting from the left) the 'x' count >= 'y' count. For example, for n=3 we have xxxyyy, xxyxyy, xxyyxy, xyxxyy and xyxyxy. - _Jon Perry_, Nov 16 2012
%C A000108 a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps come in 2 colors. Example: a(4)=14 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 8 paths of shape HHH, 2 paths of shape UHD, 2 paths of shape UDH, and 2 paths of shape HUD. - _José Luis Ramírez Ramírez_, Jan 16 2013
%C A000108 If p is an odd prime, then (-1)^((p-1)/2)*a((p-1)/2) mod p = 2. - _Gary Detlefs_, Feb 20 2013
%C A000108 Conjecture: For any positive integer n, the polynomial Sum_{k=0..n} a(k)*x^k is irreducible over the field of rational numbers. - _Zhi-Wei Sun_, Mar 23 2013
%C A000108 a(n) is the size of the Jones monoid on 2n points (cf. A225798). - _James Mitchell_, Jul 28 2013
%C A000108 For 0 < p < 1, define f(p) = Sum_{n>=0} a(n)*(p*(1-p))^n, then f(p) = min{1/p, 1/(1-p)}, so f(p) reaches its maximum value 2 at p = 0.5, and p*f(p) is constant 1 for 0.5 <= p < 1. - _Bob Selcoe_, Nov 16 2013 [Corrected by _Jianing Song_, May 21 2021]
%C A000108 No a(n) has the form x^m with m > 1 and x > 1. - _Zhi-Wei Sun_, Dec 02 2013
%C A000108 From _Alexander Adamchuk_, Dec 27 2013: (Start)
%C A000108 Prime p divides a((p+1)/2) for p > 3. See A120303(n) = Largest prime factor of Catalan number.
%C A000108 Reciprocal Catalan Constant C = 1 + 4*sqrt(3)*Pi/27 = 1.80613.. = A121839.
%C A000108 Log(Phi) = (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/a(k). See A002390 = Decimal expansion of natural logarithm of golden ratio.
%C A000108 3-d analog of the Catalan numbers: (3n)!/(n!(n+1)!(n+2)!) = A161581(n) = A006480(n) / ((n+1)^2*(n+2)), where A006480(n) = (3n)!/(n!)^3 De Bruijn's S(3,n). (End)
%C A000108 For a relation to the inviscid Burgers's, or Hopf, equation, see A001764. - _Tom Copeland_, Feb 15 2014
%C A000108 From _Fung Lam_, May 01 2014: (Start)
%C A000108 One class of generalized Catalan numbers can be defined by g.f. A(x) = (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x) with nonzero parameter q.  Recurrence: (n+3)*a(n+2) -2*q*(2*n+3)*a(n+1) +4*q*(q-1)*n*a(n) = 0 with a(0)=1, a(1)=1.
%C A000108 Asymptotic approximation for q >= 1: a(n) ~ (2*q+2*sqrt(q))^n*sqrt(2*q*(1+sqrt(q))) /sqrt(4*q^2*Pi*n^3).
%C A000108 For q <= -1, the g.f. defines signed sequences with asymptotic approximation: a(n) ~ Re(sqrt(2*q*(1+sqrt(q)))*(2*q+2*sqrt(q))^n) / sqrt(q^2*Pi*n^3), where Re denotes the real part. Due to Stokes' phenomena, accuracy of the asymptotic approximation deteriorates at/near certain values of n.
%C A000108 Special cases are A000108 (q=1), A068764 to A068772 (q=2 to 10), A240880 (q=-3).
%C A000108 (End)
%C A000108 Number of sequences [s(0), s(1), ..., s(n)] with s(n)=0, Sum_{j=0..n} s(j) = n, and Sum_{j=0..k} s(j)-1 >= 0 for k < n-1 (and necessarily Sum_{j=0..n-1} s(j)-1 = 0).  These are the branching sequences of the (ordered) trees with n non-root nodes, see example. - _Joerg Arndt_, Jun 30 2014
%C A000108 Number of stack-sortable permutations of [n], these are the 231-avoiding permutations; see the Bousquet-Mélou reference. - _Joerg Arndt_, Jul 01 2014
%C A000108 a(n) is the number of increasing strict binary trees with 2n-1 nodes that avoid 132. For more information about increasing strict binary trees with an associated permutation, see A245894. - _Manda Riehl_, Aug 07 2014
%C A000108 In a one-dimensional medium with elastic scattering (zig-zag walk), first recurrence after 2n+1 scattering events has the probability C(n)/2^(2n+1). - _Joachim Wuttke_, Sep 11 2014
%C A000108 The o.g.f. C(x) = (1 - sqrt(1-4x))/2, for the Catalan numbers, with comp. inverse Cinv(x) = x*(1-x) and the functions P(x) = x / (1 + t*x) and its inverse Pinv(x,t) = -P(-x,t) = x / (1 - t*x) form a group under composition that generates or interpolates among many classic arrays, such as the Motzkin (Riordan, A005043), Fibonacci (A000045), and Fine (A000957) numbers and polynomials (A030528), and enumerating arrays for Motzkin, Dyck, and Łukasiewicz lattice paths and different types of trees and non-crossing partitions (A091867, connected to sums of the refined Narayana numbers A134264). - _Tom Copeland_, Nov 04 2014
%C A000108 Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - _Zhi-Wei Sun_, Sep 24 2015
%C A000108 The Catalan number series A000108(n+3), offset n=0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset n=0 (empirical observation). - _Tony Foster III_, Sep 05 2016
%C A000108 Hankel transforms of the Catalan numbers with the first 2, 4, and 5 terms omitted give A001477, A006858, and A091962, respectively, without the first 2 terms in all cases. More generally, the Hankel transform of the Catalan numbers with the first k terms omitted is H_k(n) = Product_{j=1..k-1} Product_{i=1..j} (2*n+j+i)/(j+i) [see Cigler (2011), Eq. (1.14) and references therein]; together they form the array A078920/A123352/A368025. - _Andrey Zabolotskiy_, Oct 13 2016
%C A000108 Presumably this satisfies Benford's law, although the results in Hürlimann (2009) do not make this clear. See S. J. Miller, ed., 2015, p. 5. - _N. J. A. Sloane_, Feb 09 2017
%C A000108 Coefficients of the generating series associated to the Magmatic and Dendriform operadic algebras. Cf. p. 422 and 435 of the Loday et al. paper. - _Tom Copeland_, Jul 08 2018
%C A000108 Let M_n be the n X n matrix with M_n(i,j) = binomial(i+j-1,2j-2); then det(M_n) = a(n). - _Tony Foster III_, Aug 30 2018
%C A000108 Also the number of Catalan trees, or planted plane trees (Bona, 2015, p. 299, Theorem 4.6.3). - _N. J. A. Sloane_, Dec 25 2018
%C A000108 Number of coalescent histories for a caterpillar species tree and a matching caterpillar gene tree with n+1 leaves (Rosenberg 2007, Corollary 3.5). - _Noah A Rosenberg_, Jan 28 2019
%C A000108 Finding solutions of eps*x^2+x-1 = 0 for eps small, that is, writing x = Sum_{n>=0} x_{n}*eps^n and expanding, one finds x = 1 - eps + 2*eps^2 - 5*eps^3 + 14*eps^3 - 42*eps^4 + ... with x_{n} = (-1)^n*C(n). Further, letting x = 1/y and expanding y about 0 to find large roots, that is, y = Sum_{n>=1} y_{n}*eps^n, one finds y = 0 - eps + eps^2 - 2*eps^3 + 5*eps^3 - ... with y_{n} = (-1)^n*C(n-1).  - _Derek Orr_, Mar 15 2019
%C A000108 Permutations of length n that produce a bipartite permutation graph of order n [see Knuth (1973), Busch (2006), Golumbic and Trenk (2004)]. - _Elise Anderson_, _R. M. Argus_, _Caitlin Owens_, _Tessa Stevens_, Jun 27 2019
%C A000108 For n > 0, a random selection of n + 1 objects (the minimum number ensuring one pair by the pigeonhole principle) from n distinct pairs of indistinguishable objects contains only one pair with probability 2^(n-1)/a(n) = b(n-1)/A098597(n), where b is the 0-offset sequence with the terms of A120777 repeated (1,1,4,4,8,8,64,64,128,128,...). E.g., randomly selecting 6 socks from 5 pairs that are black, blue, brown, green, and white, results in only one pair of the same color with probability 2^(5-1)/a(5) = 16/42 = 8/21 = b(4)/A098597(5). - _Rick L. Shepherd_, Sep 02 2019
%C A000108 See Haran & Tabachnikov link for a video discussing Conway-Coxeter friezes. The Conway-Coxeter friezes with n nontrivial rows are generated by the counts of triangles at each vertex in the triangulations of regular n-gons, of which there are a(n). - _Charles R Greathouse IV_, Sep 28 2019
%C A000108 For connections to knot theory and scattering amplitudes from Feynman diagrams, see Broadhurst and Kreimer, and Todorov. Eqn. 6.12 on p. 130 of Bessis et al. becomes, after scaling, -12g * r_0(-y/(12g)) = (1-sqrt(1-4y))/2, the o.g.f. (expressed as a Taylor series in Eqn. 7.22 in 12gx) given for the Catalan numbers in Copeland's (Sep 30 2011) formula below. (See also Mizera p. 34, Balduf pp. 79-80, Keitel and Bartosch.) - _Tom Copeland_, Nov 17 2019
%C A000108 Number of permutations in S_n whose principal order ideals in the weak order are modular lattices. - _Bridget Tenner_, Jan 16 2020
%C A000108 Number of permutations in S_n whose principal order ideals in the weak order are distributive lattices. - _Bridget Tenner_, Jan 16 2020
%C A000108 Legendre gives the following formula for computing the square root modulo 2^m:
%C A000108   sqrt(1 + 8*a) mod 2^m = (1 + 4*a*Sum_{i=0..m-4} C(i)*(-2*a)^i) mod 2^m
%C A000108   as cited by L. D. Dickson, History of the Theory of Numbers, Vol. 1, 207-208. - _Peter Schorn_, Feb 11 2020
%C A000108 a(n) is the number of length n permutations sorted to the identity by a consecutive-132-avoiding stack followed by a classical-21-avoiding stack. - _Kai Zheng_, Aug 28 2020
%C A000108 Number of non-crossing partitions of a 2*n-set with n blocks of size 2. Also number of non-crossing partitions of a 2*n-set with n+1 blocks of size at most 3, and without cyclical adjacencies. The two partitions can be mapped by rotated Kreweras bijection. - _Yuchun Ji_, Jan 18 2021
%C A000108 Named by Riordan (1968, and earlier in Mathematical Reviews, 1948 and 1964) after the French and Belgian mathematician Eugène Charles Catalan (1814-1894) (see Pak, 2014). - _Amiram Eldar_, Apr 15 2021
%C A000108 For n >= 1, a(n-1) is the number of interpretations of x^n is an algebra where power-associativity is not assumed. For example, for n = 4 there are a(3) = 5 interpretations: x(x(xx)), x((xx)x), (xx)(xx), (x(xx))x, ((xx)x)x. See the link "Non-associate powers and a functional equation" from I. M. H. Etherington and the page "Nonassociative Product" from Eric Weisstein's World of Mathematics for detailed information. See also A001190 for the case where multiplication is commutative. - _Jianing Song_, Apr 29 2022
%C A000108 Number of states in the transition diagram associated with the Laplacian system over the complete graph K_N, corresponding to ordered initial conditions x_1 < x_2 < ... < x_N. - _Andrea Arlette España_, Nov 06 2022
%C A000108 a(n) is the number of 132-avoiding stabilized-interval-free permutations of size n+1. - _Juan B. Gil_, Jun 22 2023
%C A000108 Number of rooted polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - _Robert A. Russell_, Jan 27 2024
%C A000108 a(n) is the number of extremely lucky Stirling permutations of order n; i.e., the number of Stirling permutations of order n that have exactly n lucky cars. (see Colmenarejo et al. reference) - _Bridget Tenner_, Apr 16 2024
%D A000108 The large number of references and links demonstrates the ubiquity of the Catalan numbers.
%D A000108 R. Alter, Some remarks and results on Catalan numbers, pp. 109-132 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 2, edited R. C. Mullin et al., 1971.
%D A000108 Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, many references.
%D A000108 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 53.
%D A000108 J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, ch. 4, pp. 96-106.
%D A000108 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 183, 196, etc.).
%D A000108 Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
%D A000108 E. Deutsch, Dyck path enumeration, Discrete Math., 204, 167-202, 1999.
%D A000108 E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.
%D A000108 L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, 207-208.
%D A000108 Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182-2212. MR2404544 (2009j:05019)
%D A000108 S. Dulucq and J.-G. Penaud, Cordes, arbres et permutations. Discrete Math. 117 (1993), no. 1-3, 89-105.
%D A000108 A. Errera, Analysis situs - Un problème d'énumération, Mémoires Acad. Bruxelles, Classe des sciences, Série 2, Vol. XI, Fasc. 6, No. 1421 (1931), 26 pp.
%D A000108 Ehrenfeucht, Andrzej; Haemer, Jeffrey; Haussler, David. Quasimonotonic sequences: theory, algorithms and applications. SIAM J. Algebraic Discrete Methods 8 (1987), no. 3, 410-429. MR0897739 (88h:06026)
%D A000108 I. M. H. Etherington, Non-associate powers and a functional equation. The Mathematical Gazette, 21 (1937): 36-39; addendum 21 (1937), 153.
%D A000108 I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
%D A000108 I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
%D A000108 K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc., 10 (1997), 139-167.
%D A000108 Susanna Fishel, Myrto Kallipoliti and Eleni Tzanaki, Facets of the Generalized Cluster Complex and Regions in the Extended Catalan Arrangement of Type A, The electronic Journal of Combinatorics 20(4) (2013), #P7.
%D A000108 D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
%D A000108 H. G. Forder, Some problems in combinatorics, Math. Gazette, vol. 45, 1961, 199-201.
%D A000108 Fürlinger, J.; Hofbauer, J., q-Catalan numbers. J. Combin. Theory Ser. A 40 (1985), no. 2, 248-264. MR0814413 (87e:05017)
%D A000108 M. Gardner, Time Travel and Other Mathematical Bewilderments, Chap. 20 pp. 253-266, W. H. Freeman NY 1988.
%D A000108 James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
%D A000108 M. C. Golumbic and A. N. Trenk, Tolerance graphs, Vol. 89, Cambridge University Press, 2004, pp. 32.
%D A000108 S Goodenough, C Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16,
%D A000108 H. W. Gould, Research bibliography of two special number sequences, Mathematica Monongaliae, Vol. 12, 1971.
%D A000108 D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
%D A000108 M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 53-63 and 85-93.
%D A000108 J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 530.
%D A000108 N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
%D A000108 R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
%D A000108 R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis. Amer. Math. Monthly 80 (1973), 868-876.
%D A000108 Peter Hajnal and Gabor V. Nagy, A bijective proof of Shapiro's Catalan convolution, Elect. J. Combin., 21 (2014), #P2.42.
%D A000108 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.23).
%D A000108 F. Harary, G. Prins, and W. T. Tutte, The number of plane trees. Indag. Math. 26, 319-327, 1964.
%D A000108 J. Harris, Algebraic Geometry: A First Course (GTM 133), Springer-Verlag, 1992, pages 245-247.
%D A000108 S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
%D A000108 Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
%D A000108 Higgins, Peter M. Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. (1993), 113: 281-296.
%D A000108 B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
%D A000108 F. Hurtado, M. Noy, Ears of triangulations and Catalan numbers, Discrete Mathematics, Volume 149, Issues 1-3, Feb 22 1996, Pages 319-324.
%D A000108 M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5.
%D A000108 R. H. Jeurissen, Raney and Catalan, Discrete Math., 308 (2008), 6298-6307.
%D A000108 M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 36.
%D A000108 Kim, Ki Hang; Rogers, Douglas G.; Roush, Fred W. Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013)
%D A000108 Klarner, D. A. A Correspondence Between Sets of Trees. Indag. Math. 31, 292-296, 1969.
%D A000108 M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
%D A000108 D. E. Knuth, The Art of Computer Programming, 2nd Edition, Vol. 1, Addison-Wesley, 1973, pp. 238.
%D A000108 D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.6 (p. 450).
%D A000108 Thomas Koshy and Mohammad Salmassi, "Parity and Primality of Catalan Numbers", College Mathematics Journal, Vol. 37, No. 1 (Jan 2006), pp. 52-53.
%D A000108 M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
%D A000108 E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
%D A000108 C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
%D A000108 P. Lafar and C. T. Long, A combinatorial problem, Amer. Math. Mnthly, 69 (1962), 876-883.
%D A000108 Laradji, A. and Umar, A. On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
%D A000108 P. J. Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Mathematics Today, 35 (1999), p. 25.
%D A000108 P. J. Larcombe, On the history of the Catalan numbers: a first record in China, Mathematics Today, 35 (1999), p. 89.
%D A000108 P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum, 32 (1999/2000), 5-7.
%D A000108 P. J. Larcombe and P. D. C. Wilson, On the trail of the Catalan sequence, Mathematics Today, 34 (1998), 114-117.
%D A000108 P. J. Larcombe and P. D. C. Wilson, On the generating function of the Catalan sequence: a historical perspective, Congress. Numer., 149 (2001), 97-108.
%D A000108 G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.
%D A000108 J. J. Luo, Antu Ming, the first inventor of Catalan numbers in the world [in Chinese], Neimenggu Daxue Xuebao, 19 (1998), 239-245.
%D A000108 C. L. Mallows, R. J. Vanderbei, Which Young Tableaux Can Represent an Outer Sum?, Journal of Integer Sequences, Vol. 18, 2015, #15.9.1.
%D A000108 Toufik Mansour, Matthias Schork, and Mark Shattuck, Catalan numbers and pattern restricted set partitions. Discrete Math. 312(2012), no. 20, 2979-2991. MR2956089
%D A000108 Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
%D A000108 M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000). Zbl 0945.05037
%D A000108 D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
%D A000108 A. Milicevic and N. Trinajstic, "Combinatorial Enumeration in Chemistry", Chem. Modell., Vol. 4, (2006), pp. 405-469.
%D A000108 Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015.
%D A000108 David Molnar, "Wiggly Games and Burnside's Lemma", Chapter 8, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 102.
%D A000108 C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly, 64 (1957), 143-154.
%D A000108 A. Panholzer and H. Prodinger, Bijections for ternary trees and non-crossing trees, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
%D A000108 Papoulis, Athanasios. "A new method of inversion of the Laplace transform."Quart. Appl. Math 14.405-414 (1957): 124.
%D A000108 S. G. Penrice, Stacks, bracketings and CG-arrangements, Math. Mag., 72 (1999), 321-324.
%D A000108 C. A. Pickover, Wonders of Numbers, Chap. 71, Oxford Univ. Press NY 2000.
%D A000108 Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
%D A000108 G. Pólya, On the number of certain lattice polygons. J. Combinatorial Theory 6 1969 102-105. MR0236031 (38 #4329)
%D A000108 C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.
%D A000108 Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
%D A000108 Ronald C. Read, "The Graph Theorists who Count -- and What They Count", in 'The Mathematical Gardner', in D. A. Klarner, Ed., pp. 331-334, Wadsworth CA 1989.
%D A000108 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
%D A000108 J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
%D A000108 T. Santiago Costa Oliveira, "Catalan traffic" and integrals on the Grassmannian of lines, Discr. Math., 308 (2007), 148-152.
%D A000108 A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
%D A000108 E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
%D A000108 Shapiro, Louis W. Catalan numbers and "total information" numbers. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 531-539. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0398853 (53 #2704).
%D A000108 L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory, A 20 (1976), 375-376.
%D A000108 L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
%D A000108 L. W. Shapiro, W.-J. Woan and S. Getu, The Catalan numbers via the World Series, Math. Mag., 66 (1993), 20-22.
%D A000108 D. M. Silberger, Occurrences of the integer (2n-2)!/n!(n-1)!, Roczniki Polskiego Towarzystwa Math. 13 (1969): 91-96.
%D A000108 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000108 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A000108 S. Snover and S. Troyer, Multidimensional Catalan numbers, Abstracts 848-05-94 and 848-05-95, 848th Meeting, Amer. Math. Soc., Worcester Mass., March 15-16, 1989.
%D A000108 R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, Vol. 2, 1999; see especially Chapter 6.
%D A000108 R. P. Stanley, Recent Progress in Algebraic Combinatorics, Bull. Amer. Math. Soc., 40 (2003), 55-68.
%D A000108 Richard P. Stanley, "Catalan Numbers", Cambridge University Press, 2015.
%D A000108 J. J. Sylvester, On reducible cyclodes, Coll. Math. Papers, Vol. 2, see especially page 670, where Catalan numbers appear.
%D A000108 Thiel, Marko. "A new cyclic sieving phenomenon for Catalan objects." Discrete Mathematics 340.3 (2017): 426-429.
%D A000108 I. Vun and P. Belcher, Catalan numbers, Mathematical Spectrum, 30 (1997/1998), 3-5.
%D A000108 D. Wells, Penguin Dictionary of Curious and Interesting Numbers, Entry 42 p 121, Penguin Books, 1987.
%D A000108 D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 41.
%D A000108 J. Wuttke, The zig-zag walk with scattering and absorption on the real half line and in a lattice model, J. Phys. A 47 (2014), 215203, 1-9.
%H A000108 Robert G. Wilson v, <a href="/A000108/b000108.txt">Table of n, a(n) for n = 0..1000</a> (first 200 terms from N. J. A. Sloane, first 351 from K. D. Bajpai)
%H A000108 James Abello, <a href="http://dx.doi.org/10.1137/0404001">The weak Bruhat order of S_Sigma, consistent sets, and Catalan numbers</a>, SIAM J. Discrete Math. 4 (1991), 1-16.
%H A000108 Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, <a href="https://doi.org/10.1016/j.disc.2014.06.026">Colored compositions, Invert operator and elegant compositions with the "black tie"</a>, Discrete Mathematics, 335 (2014), 1-7.
%H A000108 M. Aigner, <a href="https://doi.org/10.1016/j.disc.2007.06.012">Enumeration via ballot numbers</a>, Discrete Mathematics, Vol. 308, No. 12 (2008), 2544-2563.
%H A000108 R. Alter and K. K. Kubota, <a href="https://doi.org/10.1016/0097-3165(73)90072-1">Prime and prime power divisibility of Catalan numbers</a>, Journal of Combinatorial Theory, Series A, Vol. 15, No. 3 (1973), 243-256.
%H A000108 M. J. H. Al-Kaabi, D. Manchon and F. Patras, Chapter 2 of <a href="https://arxiv.org/abs/1708.08312">Monomial bases and pre-Lie structure for free Lie algebras</a>, arXiv:1708.08312 [math.RA], 2017, See p. 3.
%H A000108 P. C. Allaart and K. Kawamura, <a href="http://arxiv.org/abs/1110.1691">The Takagi function: a survey</a>, Real Analysis Exchange, 37 (2011/12), 1-54; arXiv:1110.1691 [math.CA]. See Section 3.2.
%H A000108 N. Alon, Y. Caro and I. Krasikov, <a href="http://www.math.tau.ac.il/~nogaa/PDFS/Publications/Bisection of trees and sequences.pdf">Bisection of trees and sequences</a>, Discrete Math., 114 (1993), 3-7. (See Lemma 2.1.)
%H A000108 G. Alvarez, J. E. Bergner and R. Lopez, <a href="http://arxiv.org/abs/1503.00044">Action graphs and Catalan numbers</a>, arXiv preprint arXiv:1503.00044 [math.CO], 2015.
%H A000108 George E. Andrews, <a href="https://doi.org/10.1016/0097-3165(87)90033-1">Catalan numbers, q-Catalan numbers and hypergeometric series</a>, Journal of Combinatorial Theory, Series A, Vol. 44, No. 2 (1987), 267-273.
%H A000108 Federico Ardila, <a href="https://fardila.com/Articles/catalanENG.pdf">Catalan Numbers</a>, 2016.
%H A000108 Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8. Also arXiv:<a href="https://arxiv.org/abs/math/0611106">math/0611106</a>, 2006-2007.
%H A000108 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, p. 333 and p. 337.
%H A000108 Joerg Arndt, <a href="/A000108/a000108.txt">The a(5)=42 Young tableaux of shape [5,5]</a>.
%H A000108 Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, <a href="https://arxiv.org/abs/1903.00813">Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube</a>, arXiv:1903.00813 [math.CO], 2019.
%H A000108 Yu Hin Au, <a href="https://arxiv.org/abs/1912.00555">Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers</a>, arXiv:1912.00555 [math.CO], 2019.
%H A000108 Jean-Christophe Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
%H A000108 M. Azaola and F. Santos, <a href="http://personales.unican.es/santosf/Articulos/#2002">The number of triangulations of the cyclic polytope C(n,n-4)</a>, Discrete Comput. Geom., 27 (2002), 29-48. (C(n) = number of triangulations of cyclic polytope C(n,2).)
%H A000108 R. Bacher and C. Krattenthaler, <a href="https://doi.org/10.37236/639">Chromatic statistics for triangulations and Fuss-Catalan complexes</a>, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), #P152.
%H A000108 John Baez, <a href="http://math.ucr.edu/home/baez/week202.html">This week's finds in mathematical physics, Week 202</a>
%H A000108 D. F. Bailey, <a href="http://www.jstor.org/stable/2690671">Counting Arrangements of 1's and -1's</a>, Mathematics Magazine 69(2) 128-131 1996.
%H A000108 I. Bajunaid et al., <a href="https://doi.org/10.1080/00029890.2005.11920251">Function Series, Catalan Numbers, and Random Walks on Trees</a>, The American Mathematical Monthly, Vol. 112, No. 9 (2005), 765-785.
%H A000108 P. Balduf, <a href="http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/PaulMaster">The propagator and diffeomorphisms of an interacting field theory</a>, Master's thesis, submitted to the Institut für Physik, Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität, Berlin, 2018.
%H A000108 C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, <a href="http://algo.inria.fr/banderier/Papers/DiscMath99.ps">Generating Functions for Generating Trees</a>, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
%H A000108 C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, <a href="http://algo.inria.fr/flajolet/Publications/RR-3661.pdf">INRIA report 3661</a>, <a href="http://algo.inria.fr/banderier/Papers/DiscMath99.ps">preprint for FPSAC 99</a>, <a href="https://doi.org/10.1016/S0012-365X(01)00250-3">Generating Functions for Generating Trees</a>, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
%H A000108 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
%H A000108 Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne and Martin Leuner, <a href="https://arxiv.org/abs/1907.01073">On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture</a>, arXiv:1907.01073 [math.CO], 2019.
%H A000108 S. Barbero, U. Cerruti and N. Murru, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barbero2/barbero7.html">A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences</a>, J. Int. Seq. 13 (2010) # 10.9.7, theorem 17.
%H A000108 E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, <a href="https://hal.inria.fr/hal-00958943">Permutations avoiding an increasing number of length-increasing forbidden subsequences</a>, Discrete Mathematics and Theoretical Computer Science 4, 2000, 31-44.
%H A000108 E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, <a href="https://doi.org/10.1016/S0012-365X(00)00359-9">Some permutations with forbidden subsequences and their inversion number</a>, Discrete Mathematics, Vol. 234, No. 1-3 (2001), 1-15.
%H A000108 E. Barcucci, A. Frosini and S. Rinaldi, <a href="https://doi.org/10.1016/j.disc.2005.01.006">On directed-convex polyominoes in a rectangle</a>, Discrete Mathematics, Vol. 298, No. 1-3 (2005), 62-78.
%H A000108 Finnley, <a href="https://www.youtube.com/watch?v=X6NQMB6JaF0">My favorite Sequence of Numbers</a>, YouTube video, 2025
%H A000108 Jean-Luc Baril, <a href="https://doi.org/10.37236/665">Classical sequences revisited with permutations avoiding dotted pattern</a>, Electronic Journal of Combinatorics, 18 (2011), #P178.
%H A000108 Jean-Luc Baril, <a href="https://doi.org/10.46298/dmtcs.2158">Avoiding patterns in irreducible permutations</a>, Discrete Mathematics and Theoretical Computer Science,  Vol 17, No 3 (2016).
%H A000108 Jean-Luc Baril, David Bevan and Sergey Kirgizov, <a href="https://arxiv.org/abs/1906.11870">Bijections between directed animals, multisets and Grand-Dyck paths</a>, arXiv:1906.11870 [math.CO], 2019.
%H A000108 Jean-Luc Baril, C. Khalil and V. Vajnovszki, <a href="https://arxiv.org/abs/2004.01812">Catalan and Schröder permutations sortable by two restricted stacks</a>, arXiv:2004.01812 [cs.DM], 2020.
%H A000108 Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, <a href="http://math.colgate.edu/~integers/t46/t46.Abstract.html">Motzkin paths with a restricted first return decomposition</a>, Integers (2019) Vol. 19, A46.
%H A000108 Jean-Luc Baril, Sergey Kirgizov, José L. Ramírez, and Diego Villamizar, <a href="https://arxiv.org/abs/2401.06228">The Combinatorics of Motzkin Polyominoes</a>, arXiv:2401.06228 [math.CO], 2024. See page 1.
%H A000108 Jean-Luc Baril, Sergey Kirgizov and Vincent Vajnovszki, <a href="https://arxiv.org/abs/1803.06706">Descent distribution on Catalan words avoiding a pattern of length at most three</a>, arXiv:1803.06706 [math.CO], 2018.
%H A000108 Jean-Luc Baril, T. Mansour and A. Petrossian, <a href="http://jl.baril.u-bourgogne.fr/equival.pdf">Equivalence classes of permutations modulo excedances</a>, 2014.
%H A000108 Jean-Luc Baril and J.-M. Pallo, <a href="http://jl.baril.u-bourgogne.fr/Motzkin.pdf">Motzkin subposet and Motzkin geodesics in Tamari lattices</a>, 2013.
%H A000108 Jean-Luc Baril and Armen Petrossian, <a href="https://doi.org/10.1016/j.disc.2014.12.003">Equivalence classes of Dyck paths modulo some statistics</a>, Discrete Mathematics, Vol. 338, No. 4 (2015), 655-660.
%H A000108 Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Barnabei/barnabei5.html">Motzkin and Catalan Tunnel Polynomials</a>, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
%H A000108 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
%H A000108 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
%H A000108 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry1/barry95r.html">Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences </a>, J. Int. Seq. 13 (2010) #10.7.2.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1803.06408">Three Études on a sequence transformation pipeline</a>, arXiv:1803.06408 [math.CO], 2018.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1803.10297">Generalized Eulerian Triangles and Some Special Production Matrices</a>, arXiv:1803.10297 [math.CO], 2018.
%H A000108 Paul Barry, <a href="https://doi.org/10.1016/j.laa.2015.10.032">Riordan arrays, generalized Narayana triangles, and series reversion</a>, Linear Algebra and its Applications, 491 (2016), 343-385.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1804.05027">The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays</a>, arXiv:1804.05027 [math.CO], 2018.
%H A000108 Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry2/barry94r.html">The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences</a>, J. Int. Seq. 13 (2010) # 10.8.2
%H A000108 Paul Barry, <a href="http://arxiv.org/abs/1107.5490">Invariant number triangles, eigentriangles and Somos-4 sequences</a>, arXiv:1107.5490 [math.CO], 2011.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.
%H A000108 Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry1/barry411.html">The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths</a>, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
%H A000108 Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry3/barry422.html">Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles</a>, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1912.01124">A Note on Riordan Arrays with Catalan Halves</a>, arXiv:1912.01124 [math.CO], 2019.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1912.01126">Riordan arrays, the A-matrix, and Somos 4 sequences</a>, arXiv:1912.01126 [math.CO], 2019.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/1912.11845">Chebyshev moments and Riordan involutions</a>, arXiv:1912.11845 [math.CO], 2019.
%H A000108 Paul Barry, <a href="https://arxiv.org/abs/2001.08799">Characterizations of the Borel triangle and Borel polynomials</a>, arXiv:2001.08799 [math.CO], 2020.
%H A000108 A. M. Baxter and L. K. Pudwell, <a href="http://faculty.valpo.edu/lpudwell/papers/AvoidingPairs.pdf">Ascent sequences avoiding pairs of patterns</a>, 2014.
%H A000108 Margaret Bayer and Keith Brandt, <a href="https://bayer.ku.edu/pub/preprints/pill.pdf">The Pill Problem, Lattice Paths and Catalan Numbers</a>, preprint, Mathematics Magazine, Vol. 87, No. 5 (December 2014), pp. 388-394.
%H A000108 Christian Bean, A. Claesson and H. Ulfarsson, <a href="http://arxiv.org/abs/1512.03226">Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3</a>, arXiv preprint arXiv:1512.03226 [math.CO], 2015.
%H A000108 Nicholas R. Beaton, Mathilde Bouvel, Veronica Guerrini and Simone Rinaldi, <a href="https://arxiv.org/abs/1808.04114">Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers</a>, arXiv:1808.04114 [math.CO], 2018.
%H A000108 L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in <a href="http://dx.doi.org/10.1007/BF02330563">Math. Annalen 191 (1971), 87-98</a>.
%H A000108 E. T. Bell, <a href="https://doi.org/10.2307/1968633">The Iterated Exponential Integers</a>, Annals of Mathematics, Vol. 39, No. 3 (1938), 539-557.
%H A000108 Maciej Bendkowski and Pierre Lescanne, <a href="https://arxiv.org/abs/1804.03862">Combinatorics of explicit substitutions</a>, arXiv:1804.03862 [cs.LO], 2018.
%H A000108 Matthew Bennett, Vyjayanthi Chari, R. J. Dolbin and Nathan Manning, <a href="http://arxiv.org/abs/0912.4983">Square partitions and Catalan numbers</a>, arXiv:0912.4983 [math.RT], 2009.
%H A000108 F. Bergeron, G. Labelle and P. Leroux, <a href="https://doi.org/10.1017/CBO9781107325913">Combinatorial Species and Tree-like Structures</a>, Encyclopedia of Mathematics and its Applications 67 (1997), see pp. 163, 167, 168, 252, 256, 291.
%H A000108 Julia E. Bergner, Cedric Harper, Ryan Keller and Mathilde Rosi-Marshall, <a href="https://arxiv.org/abs/1807.03005">Action graphs, planar rooted forests, and self-convolutions of the Catalan numbers</a>, arXiv:1807.03005 [math.CO], 2018.
%H A000108 E. E. Bernard and P. D. A. Mole, <a href="/A000108/a000108_7.pdf">Generating strategies for continuous separation processes</a>, Computer J., 2 (1959), 87-89. [Annotated scanned copy]
%H A000108 E. E. Bernard and P. D. A. Mole, <a href="https://doi.org/10.1093/comjnl/2.2.87">Generating Strategies for Continuous Separation Processes</a>, The Computer Journal, Vol. 2, No. 2 (1959), 87-89.
%H A000108 F. R. Bernhart, <a href="https://doi.org/10.1016/S0012-365X(99)00054-0">Catalan, Motzkin and Riordan numbers</a>, Discrete Mathematics, Vol. 204, No. 1-3 (1999), 73-112.
%H A000108 A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Rinaldi/rinaldi5.html">Permutations Defining Convex Permutominoes</a>, Journal of Integer Sequences 10 (2007), Article 07.9.7.
%H A000108 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H A000108 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures].
%H A000108 D. Bessis, C. Itzykson, and J. B. Zuber, <a href="https://www.sciencedirect.com/science/article/pii/0196885880900081">Quantum Field Theory Techniques in Graphical Enumeration</a>, Adv. in Applied Math., Vol. I, Issue 3, Jun 1980, p. 109-157.
%H A000108 D. Bill, <a href="http://www.durangobill.com/BinTrees.html">Durango Bill's Enumeration of Binary Trees</a>
%H A000108 D. Birmajer, J. B. Gil, J. O. Tirrell, and M. D. Weiner, <a href="https://arxiv.org/abs/2306.03155">Pattern-avoiding stabilized-interval-free permutations</a>, arXiv:2306.03155 [math.CO], 2023.
%H A000108 Aubrey Blecher, Charlotte Brennan and Arnold Knopfmacher, <a href="https://doi.org/10.1016/j.aam.2019.101945">Water capacity of Dyck paths</a>, Advances in Applied Mathematics (2019) Vol. 112, 101945.
%H A000108 Natasha Blitvić and Einar Steingrímsson, <a href="https://arxiv.org/abs/2001.00280">Permutations, moments, measures</a>, arXiv:2001.00280 [math.CO], 2020.
%H A000108 Miklós Bóna, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i1p62">Surprising Symmetries in Objects Counted by Catalan Numbers</a>, Electronic J. Combin., 19 (2012), P62.
%H A000108 M. Bona and B. E. Sagan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sagan/sagan101.html">On Divisibility of Narayana Numbers by Primes</a>, Journal of Integer Sequences 8 (2005), Article 05.2.4.
%H A000108 H. Bottomley, <a href="/A000108/a000108b.gif">Catalan Space Invaders</a>
%H A000108 H. Bottomley, <a href="/A002694/a002694.gif">Illustration for A000108, A001147, A002694, A067310 and A067311</a>
%H A000108 T. Bourgeron, <a href="http://www.dma.ens.fr/culturemath/maths/pdf/combi/montagnards.pdf">Montagnards et polygones</a> [dead link]
%H A000108 Michel Bousquet and Cedric Lamathe, <a href="https://hal.inria.fr/hal-00972316">On symmetric structures of order two</a>, Discrete Mathematics and Theoretical Computer Science, Vol. 10, No. 2 (2008), 153-176.
%H A000108 Mireille Bousquet-Mélou, <a href="https://doi.org/10.1016/0001-8708(91)90052-9">Sorted and/or sortable permutations</a>, Discrete Mathematics, vol.225, no.1-3, pp.25-50, (2000).
%H A000108 M. Bousquet-Mélou and Gilles Schaeffer, <a href="http://www.labri.fr/Perso/~bousquet/Articles/Slitplane/PTRF/final.ps.gz">Walks on the slit plane</a>, Probability Theory and Related Fields, Vol. 124, no. 3 (2002), 305-344.
%H A000108 M. Bouvel, V. Guerrini and S. Rinaldi, <a href="http://arxiv.org/abs/1511.04864">Slicings of parallelogram polyominoes, or how Baxter and Schroeder can be reconciled</a>, arXiv preprint arXiv:1511.04864 [math.CO], 2015.
%H A000108 G. Bowlin and M. G. Brin, <a href="http://arxiv.org/abs/1301.3984">Coloring Planar Graphs via Colored Paths in the Associahedra</a>, arXiv preprint arXiv:1301.3984 [math.CO], 2013.
%H A000108 Douglas Bowman and Alon Regev, <a href="http://arxiv.org/abs/1209.6270">Counting symmetry classes of dissections of a convex regular polygon</a>, arXiv preprint arXiv:1209.6270 [math.CO], 2012.
%H A000108 Richard Brak, <a href="https://arxiv.org/abs/1808.09078">A Universal Bijection for Catalan Structures</a>, arXiv:1808.09078 [math.CO], 2018.
%H A000108 D. Broadhurst and D. Kreimer, <a href="https://arxiv.org/abs/hep-ph/9504352">Knots and Numbers in phi^4 Theory to 7 Loops and Beyond</a>, arXiv:9504352 [hep-ph], 1995.
%H A000108 K. S. Brown's Mathpages at Math Forum, <a href="https://web.archive.org/web/20171109040813/http://mathforum.org/kb/message.jspa?messageID=22219">The Meanings of Catalan Numbers</a>
%H A000108 W. G. Brown, <a href="https://doi.org/10.1080/00029890.1965.11970654">Historical Note on a Recurrent Combinatorial Problem</a>, The American Mathematical Monthly, Vol. 72, No. 9 (1965), 973-977.
%H A000108 W. G. Brown, <a href="/A000108/a000108_5.pdf">Historical note on a recurrent combinatorial problem</a>,  Amer. Math. Monthly, 72 (1965), 973-977. [Annotated scanned copy]
%H A000108 Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote and André Schulz, <a href="https://arxiv.org/abs/1903.01095">The Number of Convex Polyominoes with Given Height and Width</a>, arXiv:1903.01095 [math.CO], 2019.
%H A000108 B. Bukh, PlanetMath.org, <a href="http://planetmath.org/catalannumbers">Catalan numbers</a>
%H A000108 Alexander Burstein, Sergi Elizalde and Toufik Mansour, <a href="http://arXiv.org/abs/math.CO/0610234">Restricted Dumont permutations, Dyck paths and noncrossing partitions</a>, arXiv:math/0610234 [math.CO], 2006.
%H A000108 A. H. Busch, <a href="https://doi.org/10.1016/j.dam.2005.06.010">A characterization of triangle-free tolerance graphs</a>, Discrete Applied Mathematics 154, no. 3, 2006 pp. 471.
%H A000108 W. Butler, A. Kalotay and N. J. A. Sloane, <a href="/A000108/a000108_3.pdf">Correspondence, 1974</a>
%H A000108 W. Butler and N. J. A. Sloane, <a href="/A000108/a000108_2.pdf">Correspondence, 1974</a>
%H A000108 Libor Caha and Daniel Nagaj, <a href="https://arxiv.org/abs/1805.07168">The pair-flip model: a very entangled translationally invariant spin chain</a>, arXiv:1805.07168 [quant-ph], 2018.
%H A000108 Fangfang Cai, Qing-Hu Hou, Yidong Sun and Arthur L.B. Yang, <a href="https://arxiv.org/abs/1808.05736">Combinatorial identities related to 2X2 submatrices of recursive matrices</a>, arXiv:1808.05736 [math.CO], 2018.
%H A000108 David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Callan/callan301.html">A Combinatorial Interpretation for a Super-Catalan Recurrence</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.8.
%H A000108 D. Callan, <a href="https://doi.org/10.1080/0025570X.1999.11996750">A Combinatorial Interpretation of a Catalan Numbers Identity</a>, Mathematics Magazine, Vol. 72, No. 4 (1999), 295-298.
%H A000108 David Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Callan/callan96.html">A Combinatorial Interpretation of the Eigensequence for Composition</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
%H A000108 D. Callan, <a href="http://arxiv.org/abs/1204.5704">A variant of Touchard's Catalan number identity</a>, arXiv preprint arXiv:1204.5704 [math.CO], 2012.
%H A000108 D. Callan, <a href="https://doi.org/10.1016/j.disc.2008.11.019">Pattern avoidance in "flattened" partitions</a>, Discrete Mathematics, Vol. 309, No. 12 (2009), 4187-4191.
%H A000108 D. Callan, <a href="https://www.jstor.org/stable/27641963">The Maximum Associativeness of Division: 11091</a>, The American Mathematical Monthly, Vol. 113, No. 5 (2006), 462-463.
%H A000108 David Callan and Emeric Deutsch, <a href="http://arxiv.org/abs/1112.3639">The Run Transform</a>,  Discrete Math. 312 (2012), no. 19, 2927-2937, arXiv:1112.3639 [math.CO], 2011.
%H A000108 H. Cambazard and N. Catusse, <a href="http://arxiv.org/abs/1512.06649">Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane</a>, arXiv preprint arXiv:1512.06649, 2015
%H A000108 N. T. Cameron, <a href="https://web.archive.org/web/20190331234929 /https://math.hmc.edu/~cameron/dissertation.pdf">Random walks, trees and extensions of Riordan group techniques</a>
%H A000108 Naiomi T. Cameron and Asamoah Nkwanta, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Cameron/cameron46.html">On Some (Pseudo) Involutions in the Riordan Group</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
%H A000108 Peter J. Cameron, <a href="https://doi.org/10.1093/qmath/38.2.155">Some treelike objects</a>, The Quarterly Journal of Mathematics, Vol. 38, No. 2 (1987), 155-183. See pp. 155, 162.
%H A000108 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
%H A000108 A. Cayley, <a href="http://dx.doi.org/10.1112/plms/s1-22.1.237">On the partitions of a polygon</a>, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
%H A000108 F. Cazals, <a href="http://algo.inria.fr/libraries/autocomb/NCC-html/NCC.html">Combinatorics of Non-Crossing Configurations</a>, Studies in Automatic Combinatorics, Volume II (1997).
%H A000108 Giulio Cerbai, Anders Claesson, Luca Ferrari and Einar Steingrímsson, <a href="https://arxiv.org/abs/2006.05692">Sorting with pattern-avoiding stacks: the 132-machine</a>, arXiv:2006.05692 [math.CO], 2020.
%H A000108 José Luis Cereceda, <a href="http://arxiv.org/abs/1510.00731">An alternative recursive formula for the sums of powers of integers</a>, arXiv:1510.00731 [math.CO], 2015.
%H A000108 G. Chatel and V. Pilaud, <a href="http://arxiv.org/abs/1411.3704">The Cambrian and Baxter-Cambrian Hopf Algebras</a>, arXiv preprint arXiv:1411.3704 [math.CO], 2014.
%H A000108 Cedric Chauve, Yann Ponty and Michael Wallner, <a href="https://arxiv.org/abs/1905.04971">Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models</a>, arXiv:1905.04971 [math.CO], 2019.
%H A000108 Young-Ming Chen, <a href="https://doi.org/10.1016/j.disc.2007.03.068">The Chung-Feller theorem revisited</a>, Discrete Mathematics, Vol. 308, No. 7 (2008), 1328-1329.
%H A000108 Peter Cholak and Ludovic Patey, <a href="https://arxiv.org/abs/1812.00188">Thin set theorems and cone avoidance</a>, arXiv:1812.00188 [math.LO], 2018.
%H A000108 Wun-Seng Chou, Tian-Xiao He and Peter J.-S. Shiue, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/He/he61.html">On the Primality of the Generalized Fuss-Catalan Numbers</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.2.1.
%H A000108 Malin Christensson, <a href="http://malinc.se/m/ImageTiling.php">Make hyperbolic tilings of images</a>, web page, 2019.
%H A000108 Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Doignon/doignon40.html">Counting Biorders</a>, J. Integer Seqs., Vol. 6, 2003.
%H A000108 Kai Lai Chung and W. Feller, <a href="https://www.jstor.org/stable/88260">On Fluctuations in Coin-Tossing</a>, Proceedings of the National Academy of Sciences of the United States of America, Vol. 35, No. 10 (1949), 605-608.
%H A000108 J. Cigler, <a href="http://arxiv.org/abs/1109.1449">Some nice Hankel determinants</a>, arXiv:1109.1449 [math.CO], 2011.
%H A000108 J. Cigler, <a href="http://homepage.univie.ac.at/Johann.Cigler/preprints/chebyshev-survey.pdf">Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results</a>, 2013.
%H A000108 Johann Cigler and Christian Krattenthaler, <a href="https://arxiv.org/abs/2003.01676">Hankel determinants of linear combinations of moments of orthogonal polynomials</a>, arXiv:2003.01676 [math.CO], 2020.
%H A000108 Laura Colmenarejo, Aleyah Dawkins, Jennifer Elder, Pamela E. Harris, Kimberly J. Harry, Selvi Kara, Dorian Smith, and Bridget Eileen Tenner, <a href="https://arxiv.org/abs/2403.03280">On the lucky and displacement statistics of Stirling permutations</a>, arXiv:2403.03280 [math.CO], 2024.
%H A000108 CombOS - Combinatorial Object Server, <a href="http://combos.org/dyck.html">Generate Dyck paths</a>
%H A000108 Aldo Conca, Hans-Christian Herbig and Srikanth B. Iyengar, <a href="https://arxiv.org/abs/1705.02688">Koszul properties of the moment map of some classical representations</a>, arXiv:1705.02688 [math.AC], 2017, also <a href="https://doi.org/10.1007/s13348-018-0226-x">Collectanea Mathematica</a> (2018) 69.3, 337-357.
%H A000108 Harry Crane, <a href="https://ajc.maths.uq.edu.au/pdf/61/ajc_v61_p057.pdf">Left-right arrangements, set partitions, and pattern avoidance</a>, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
%H A000108 Alissa S. Crans, <a href="https://www.youtube.com/watch?v=eoofvKI_Okg">A surreptitious sequence: the Catalan numbers</a> video (2014).
%H A000108 Danielle Cressman, Jonathan Lin, An Nguyen and Luke Wiljanen, <a href="http://www.terpconnect.umd.edu/~jlin1000/JMM_2020_Poster.pdf">Generalized Action Graphs</a>, poster, (2020).
%H A000108 S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, <a href="/A002057/a002057.pdf">Enumeration of polyene hydrocarbons: a complete mathematical solution</a>, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
%H A000108 Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro and Leon C. Woodson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Davenport/dav3.html">The Boundary of Ordered Trees</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
%H A000108 Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, <a href="http://math.colgate.edu/~integers/u8/u8.pdf">A bijection between the triangulations of convex polygons and ordered trees</a>, Integers (2020) Vol. 20, Article #A8.
%H A000108 T. Davis, <a href="http://www.geometer.org/mathcircles/catalan.pdf">Catalan Numbers</a>
%H A000108 Colin Defant, <a href="https://arxiv.org/abs/1904.02627">Catalan Intervals and Uniquely Sorted Permutations</a>, arXiv:1904.02627 [math.CO], 2019.
%H A000108 C. Defant and K. Zheng, <a href="https://arxiv.org/abs/2008.12297">Stack-Sorting with Consecutive-Pattern-Avoiding Stacks</a>, arXiv:2008.12297 [math.CO], 2020.
%H A000108 Italo J. Dejter, <a href="https://www.researchgate.net/publication/245576352">The role of restricted growth strings in the two middle levels of the Boolean lattice B_(2k+1)</a>, University of Puerto Rico, 2018.
%H A000108 Italo J. Dejter, <a href="https://arxiv.org/abs/1911.02100">Reinterpreting Mütze's Theorem via Natural Enumeration of Ordered Rooted Trees</a>, arXiv:1911.02100 [math.CO], 2019.
%H A000108 E. Deutsch and B. E. Sagan, <a href="http://arxiv.org/abs/math.CO/0407326">Congruences for Catalan and Motzkin numbers and related sequences</a>, J. Num. Theory 117 (2006), 191-215.
%H A000108 E. Deutsch and L. Shapiro, <a href="https://doi.org/10.1016/S0012-365X(01)00121-2">A survey of the Fine numbers</a>, Discrete Math., 241 (2001), 241-265.
%H A000108 Jimmy Devillet and Bruno Teheux, <a href="https://arxiv.org/abs/1805.11936">Associative, idempotent, symmetric, and order-preserving operations on chains</a>, arXiv:1805.11936 [math.RA], 2018.
%H A000108 R. M. Dickau, <a href="https://mathshistory.st-andrews.ac.uk/Extras/Catalan/">Catalan numbers</a>
%H A000108 T. Dokos and I. Pak, <a href="http://arxiv.org/abs/1401.0770">The expected shape of random doubly alternating Baxter permutations</a>, arXiv:1401.0770 [math.CO], 2014.
%H A000108 C. Domb & A. J. Barrett, <a href="/A003408/a003408.pdf">Enumeration of ladder graphs</a>, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
%H A000108 C. Domb & A. J. Barrett, <a href="/A001764/a001764.pdf">Notes on Table 2 in "Enumeration of ladder graphs"</a>, Discrete Math. 9 (1974), 55. (Annotated scanned copy)
%H A000108 T. Doslic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Doslic/doslic6.html">Handshakes across a (round) table</a>, JIS 13 (2010) #10.2.7.
%H A000108 Eric S. Egge, Kailee Rubin, <a href="http://arxiv.org/abs/1508.05310">Snow Leopard Permutations and Their Even and Odd Threads</a>, arXiv:1508.05310 [math.CO], 2015.
%H A000108 Roger B. Eggleton and Richard K. Guy, <a href="http://www.jstor.org/stable/2689355">Catalan strikes again! How likely is a function to be convex?</a>, Mathematics Magazine, 61 (1988): 211-219.
%H A000108 Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, <a href="http://arxiv.org/abs/1504.02513">The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r</a>, arXiv:1504.02513 [math.CO], 2015.
%H A000108 Gennady Eremin, <a href="https://arxiv.org/abs/1908.03752">Factoring Catalan numbers</a>, arXiv:1908.03752 [math.NT], 2019.
%H A000108 A. España, X. Leoncini, and E. Ugalde, <a href="https://arxiv.org/abs/2205.05948">Combinatorics of the paths towards synchronization</a>, arXiv:2205.05948 [math.DS], 2022.
%H A000108 I. M. H. Etherington, <a href="/A000108/a000108_15.pdf">Non-associate powers and a functional equation</a>, Math. Gaz., 21 (1937), 36-39. [Annotated scanned copy]
%H A000108 I. M. H. Etherington, <a href="/A000108/a000108_13.pdf">On non-associative combinations</a>, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
%H A000108 I. M. H. Etherington, <a href="/A000108/a000108_14.pdf">Some problems of non-associative combinations (I)</a>, Edinburgh Math. Notes, 32 (1940), pp. i-vi. [Annotated scanned copy]. Part II [not scanned] is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
%H A000108 Jackson Evoniuk, Steven Klee and Van Magnan, <a href="https://www.emis.de/journals/JIS/VOL21/Klee/klee2.html">Enumerating Minimal Length Lattice Paths</a>, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
%H A000108 Luca Ferrari and Emanuele Munarini, <a href="http://arxiv.org/abs/1203.6792">Enumeration of edges in some lattices of paths</a>, arXiv preprint arXiv:1203.6792 [math.CO], 2012.
%H A000108 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000028/">The number of stack-sorts needed to sort a permutation</a>
%H A000108 D. C. Fielder & C. O. Alford, <a href="/A000108/a000108_19.pdf">An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles</a>, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
%H A000108 Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, <a href="http://arxiv.org/abs/math/0606370">A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics</a>, arXiv:math/0606370 [math.CO], 2006.
%H A000108 Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, <a href="https://doi.org/10.1016/0304-3975(95)00002-E">Mellin transforms and asymptotics: harmonic sums</a>, Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
%H A000108 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 18, 35
%H A000108 D. Foata and G.-N. Han, <a href="http://dx.doi.org/10.1007/s11139-009-9194-9">The doubloon polynomial triangle</a>, Ram. J. 23 (2010), 107-126
%H A000108 Dominique Foata and Guo-Niu Han, <a href="http://dx.doi.org/10.1093/qmath/hap043">Doubloons and new q-tangent numbers</a>, Quart. J. Math. 62 (2) (2011) 417-432
%H A000108 D. Foata and D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/classic.pdf">A classic proof of a recurrence for a very classical sequence</a>
%H A000108 S. Forcey, M. Kafashan, M. Maleki and M. Strayer, <a href="http://arxiv.org/abs/1212.1188">Recursive bijections for Catalan objects</a>, arXiv preprint arXiv:1212.1188 [math.CO], 2012 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Forcey/forcey2.html">J. Int. Seq. 16 (2013) #13.5.3</a>.
%H A000108 H. G. Forder, <a href="/A000108/a000108_4.pdf">Some problems in combinatorics</a>, Math. Gazette, vol. 45, 1961, 199-201. [Annotated scanned copy]
%H A000108 Shishuo Fu and Yaling Wang, <a href="https://arxiv.org/abs/1908.03912">Bijective recurrences concerning two Schröder triangles</a>, arXiv:1908.03912 [math.CO], 2019.
%H A000108 J. R. Gaggins, <a href="https://www.jstor.org/stable/3618254">Constructing the Centroid of a Polygon</a>, Math. Gaz., 61 (1988), 211-212.
%H A000108 I. Galkin, <a href="http://ulcar.uml.edu/~iag/CS/Catalan.html">Enumeration of the Binary Trees (Catalan Numbers)</a>
%H A000108 Mohammad Ganjtabesh, Armin Morabbi and Jean-Marc Steyaert, <a href="https://web.archive.org/web/20210415051137 /http://www.lifl.fr/SEQUOIA/Arena/Presentations/Ganjtabesh.pdf">Enumerating the number of RNA structures</a>
%H A000108 Joël Gay and Vincent Pilaud, <a href="https://arxiv.org/abs/1804.06572">The weak order on Weyl posets</a>, arXiv:1804.06572 [math.CO], 2018.
%H A000108 E.-K. Ghang and D. Zeilberger, <a href="http://arxiv.org/abs/1303.0885">Zeroless Arithmetic: Representing Integers ONLY using ONE</a>, arXiv preprint arXiv:1303.0885 [math.CO], 2013.
%H A000108 A. Ghasemi, K. Sreenivas and L. K. Taylor, <a href="http://arxiv.org/abs/1309.4820">Numerical Stability and Catalan Numbers</a>, arXiv preprint arXiv:1309.4820 [math.NA], 2013.
%H A000108 Étienne Ghys, <a href="http://arxiv.org/abs/1612.06373">A Singular Mathematical Promenade</a>, arXiv:1612.06373, 2016.
%H A000108 Juan B. Gil and Michael D. Weiner, <a href="https://arxiv.org/abs/1812.01682">On pattern-avoiding Fishburn permutations</a>, arXiv:1812.01682 [math.CO], 2018.
%H A000108 S. Gilliand, C. Johnson, S. Rush, D. Wood, <a href="https://doi.org/10.2140/involve.2014.7.691">The sock matching problem</a>, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 691-697.
%H A000108 Samuele Giraudo, <a href="http://arxiv.org/abs/1603.01394">Pluriassociative algebras II: The polydendriform operad and related operads</a>, arXiv:1603.01394 [math.CO], 2016.
%H A000108 Samuele Giraudo, <a href="https://arxiv.org/abs/1903.00677">Tree series and pattern avoidance in syntax trees</a>, arXiv:1903.00677 [math.CO], 2019.
%H A000108 Lisa R. Goldberg, <a href="http://www.sciencedirect.com/science/article/pii/0001870891900529">Catalan numbers and branched coverings by the Riemann sphere</a>, Adv. Math. 85 (1991), No. 2, 129-144.
%H A000108 S. Goldstein, J. L. Lebowitz and E. R. Speer, <a href="https://arxiv.org/abs/2003.04995">The Discrete-Time Facilitated Totally Asymmetric Simple Exclusion Process</a>, arXiv:2003.04995 [math-ph], 2020.
%H A000108 K. Gorska and K. A. Penson, <a href="http://arxiv.org/abs/1304.6008">Multidimensional Catalan and related numbers as Hausdorff moments</a>, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
%H A000108 H. W. Gould, <a href="https://mathscinet.ams.org/mathscinet-getitem?mr=2049119">Proof and generalization of a Catalan number formula of Larcombe</a>, Congr. Numer. 165 (2003) p 33-38.
%H A000108 Alain Goupil and Gilles Schaeffer, <a href="https://doi.org/10.1006/eujc.1998.0215">Factoring N-Cycles and Counting Maps of Given Genus</a>, Europ. J. Combinatorics (1998) 19 819-834.
%H A000108 B. Gourevitch, <a href="http://www.pi314.net/">L'univers de Pi</a> (click Mathematiciens, Gosper)
%H A000108 D. Gouyou-Beauchamps, <a href="/A005700/a005700.pdf">Chemins sous-diagonaux et tableau de Young</a>, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986. (Annotated scanned copy)
%H A000108 Taras Goy and Mark Shattuck, <a href="https://doi.org/10.1007/s12044-019-0513-9">Determinant formulas of some Toeplitz-Hessenberg matrices with Catalan entries</a>, Proceedings of the Indian Academy of Science - Mathematical Sciences, Vol. 129 (2019), Article 46.
%H A000108 Taras Goy and Mark Shattuck, <a href="https://doi.org/10.26493/2590-9770.1645.d36">Determinant identities for the Catalan, Motzkin and Schröder numbers</a>, The Art of Discrete and Applied Mathematics, Vol. 7 (2024), #P1.09.
%H A000108 Mats Granvik, <a href="http://pastebin.com/fsCtBUe1">Catalan numbers as convergents of power series</a>
%H A000108 Curtis Greene and Brady Haran, <a href="https://www.youtube.com/watch?v=JiwM5g_RC3c">Shapes and Hook Numbers (extra footage)</a>, Numberphile video (2016)
%H A000108 Catherine Greenhill, Bernard Mans, and Ali Pourmiri, <a href="https://arxiv.org/abs/2006.07588">Balanced Allocation on Dynamic Hypergraphs</a>, arXiv:2006.07588 [cs.DS], 2020.
%H A000108 H. G. Grundman and E. A. Teeple, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Grundman/grundman5.html">Sequences of Generalized Happy Numbers with Small Bases</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.8.
%H A000108 R. K. Guy, <a href="/A000108/a000108_11.pdf">Dissecting a polygon into triangles</a>, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
%H A000108 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, Sandsteps and Pascal Pyramids</a>, J. Integer Seqs., Vol. 3 (2000), #00.1.6.
%H A000108 R. K. Guy and J. L. Selfridge, <a href="/A003018/a003018.pdf">The nesting and roosting habits of the laddered parenthesis</a> (annotated cached copy)
%H A000108 Mark Haiman, with an Appendix by Ezra Miller, <a href="http://math.berkeley.edu/~mhaiman/ftp/msri-talks-2002/msri-comm-alg.pdf">Commutative algebra of n points in the plane</a>, Trends Commut. Algebra, MSRI Publ 51 (2004): 153-180. [See Theorem 1.2]
%H A000108 Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a> [Cached copy]
%H A000108 Brady Haran and Sergei Tabachnikov, <a href="https://www.youtube.com/watch?v=0mXz-NP-raY">Frieze Patterns</a>, Numberphile video (2019); <a href="https://www.youtube.com/watch?v=MJ1NAzpens4">more footage</a>
%H A000108 F. Harary, E. M. Palmer, R. C. Read, <a href="/A000108/a000108_20.pdf">On the cell-growth problem for arbitrary polygons, computer printout, circa 1974</a>
%H A000108 F. Harary & R. W. Robinson, <a href="/A000108/a000108_18.pdf">The number of achiral trees</a>, Jnl. Reine Angewandte Mathematik 278 (1975), 322-335. (Annotated scanned copy)
%H A000108 Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, <a href="https://arxiv.org/abs/1906.06069">Combinatorial generation via permutation languages. I. Fundamentals</a>, arXiv:1906.06069 [cs.DM], 2019.
%H A000108 Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011
%H A000108 A. M. Hinz, S. Klavžar, U. Milutinović and C. Petr, <a href="http://dx.doi.org/10.1007/978-3-0348-0237-6">The Tower of Hanoi - Myths and Maths</a>, Birkhäuser 2013. See page 259. <a href="http://tohbook.info">Book's website</a>
%H A000108 V. E. Hoggatt, Jr., <a href="/A001628/a001628.pdf">Letters to N. J. A. Sloane, 1974-1975</a>
%H A000108 V. E. Hoggatt, Jr. and M. Bicknell, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-5/hoggatt1.pdf">Catalan and related sequences arising from inverses of Pascal's triangle matrices</a>, Fib. Quart., 14 (1976), 395-405.
%H A000108 V. E. Hoggatt, Jr. and Paul S. Bruckman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/13-4/hoggatt2.pdf">The H-convolution transform</a>, Fibonacci Quart., Vol. 13(4), 1975, p. 357.
%H A000108 C. Homberger, <a href="http://arxiv.org/abs/1410.2657">Patterns in Permutations and Involutions: A Structural and Enumerative Approach</a>, arXiv preprint arXiv:1410.2657 [math.CO], 2014.
%H A000108 W. Hürlimann (2009). <a href="https://doi.org/10.1155/2009/970284">Generalizing Benford's law using power laws: application to integer sequences</a>. International Journal of Mathematics and Mathematical Sciences, Article ID 970284.
%H A000108 Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.29">Asymptotic Expansions for Sub-Critical Lagrangean Forms</a>, LIPIcs Proceedings of Analysis of Algorithms (2018), Vol. 110, Article 29.
%H A000108 Anders Hyllengren, <a href="/A001006/a001006_5.pdf">Four integer sequences</a>, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.
%H A000108 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=48">Encyclopedia of Combinatorial Structures 48</a>, <a href="http://ecs.inria.fr/services/structure?nbr=52">Encyclopedia of Combinatorial Structures 52</a>, <a href="http://ecs.inria.fr/services/structure?nbr=71">Encyclopedia of Combinatorial Structures 71</a>, <a href="http://ecs.inria.fr/services/structure?nbr=76">Encyclopedia of Combinatorial Structures 76</a>, and <a href="http://ecs.inria.fr/services/structure?nbr=284">Encyclopedia of Combinatorial Structures 284</a> [dead links]
%H A000108 Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.
%H A000108 I. Jensen, <a href="https://web.archive.org/web/20190330111705 /https://researchers.ms.unimelb.edu.au/~ij@unimelb/polygons/Polygons_ser.html">Series expansions for self-avoiding polygons</a>
%H A000108 S. Johnson, <a href="http://web.archive.org/web/20080129074833/http://www.saintanns.k12.ny.us/depart/math/Seth/catafrm.html">The Catalan Numbers</a>
%H A000108 A. Joseph and P. Lamprou, <a href="http://arxiv.org/abs/1512.00406">A new interpretation of Catalan numbers</a>, arXiv preprint arXiv:1512.00406 [math.CO], 2015.
%H A000108 R. Kahkeshani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Kahkeshani/kahke3.html">A Generalization of the Catalan Numbers</a>, J. Int. Seq. 16 (2013) #13.6.8
%H A000108 A. Karttunen, <a href="/A014486/a014486.pdf">Illustration of initial terms up to size n=7</a>
%H A000108 Nicholas M. Katz, <a href="https://web.math.princeton.edu/~nmk/catalan11.pdf">A note on random matrix integrals, moment identities, and Catalan numbers</a>, 2015.
%H A000108 Manuel Kauers and Doron Zeilberger, <a href="https://arxiv.org/abs/2006.10205">Counting Standard Young Tableaux With Restricted Runs</a>, arXiv:2006.10205 [math.CO], 2020.
%H A000108 J. Keitel and L. Bartosch, <a href="https://arxiv.org/abs/1109.3013">The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalisation group</a>, arXiv preprint arXiv:1109.3013 [cond-mat.stat-mech], 2012.
%H A000108 Clark Kimberling, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Kimberling/kimberling24.html">Matrix Transformations of Integer Sequences</a>, J. Integer Seqs., Vol. 6, 2003.
%H A000108 Martin Klazar, <a href="http://arxiv.org/abs/1808.08449">What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I</a>, arXiv:1808.08449, 2018.
%H A000108 Martin Klazar and Richard Horský, <a href="https://arxiv.org/abs/2107.10717">Are the Catalan Numbers a Linear Recurrence Sequence?</a>, arXiv:2107.10717 [math.CO], 2021. Published in American Mathematical Monthly, 129:2, 166-171, DOI:10.1080/00029890.2022.2005392.
%H A000108 D. E. Knuth, <a href="http://arxiv.org/abs/math/9207221">Convolution polynomials</a>, The Mathematica J., 2 (1992), 67-78.
%H A000108 M. Konvalinka and S. Wagner, <a href="http://arxiv.org/abs/1412.01168">The shape of random tanglegrams</a>, arXiv preprint arXiv:1512.01168 [cond-mat.mes-hall], 2015.
%H A000108 G. Kreweras, <a href="/A000108/a000108_1.pdf">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
%H A000108 G. Kreweras, <a href="https://doi.org/10.1016/0012-365X(72)90041-6">Sur les partitions non croisées d'un cycle</a>, (in French) Discrete Math. 1 (1972), no. 4, 333-350. MR0309747 (46 #8852)
%H A000108 C. Krishnamachary and M. Bheemasena Rao, <a href="/A000108/a000108_10.pdf">Determinants whose elements are Eulerian, prepared Bernoullian and other numbers</a>, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146. [Annotated scanned copy]
%H A000108 Nate Kube and Frank Ruskey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Ruskey/ruskey99.html">Sequences That Satisfy a(n-a(n))=0</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
%H A000108 Shrinu Kushagra, Shai Ben-David and Ihab Ilyas, <a href="https://arxiv.org/abs/1810.04361">Semi-supervised clustering for de-duplication</a>, arXiv:1810.04361 [cs.LG], 2018.
%H A000108 Marie-Louise Lackner and M Wallner, <a href="http://dmg.tuwien.ac.at/mwallner/files/lpintro.pdf">An invitation to analytic combinatorics and lattice path counting</a>; Preprint, Dec 2015.
%H A000108 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A000108 Peter J. Larcombe, Daniel R. French, <a href="https://www.researchgate.net/publication/268646122">On the "Other" Catalan Numbers: A Historical Formulation Re-Examined</a>, Preprint 2000-2016.
%H A000108 P. J. Larcombe et al., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/52-3/LarcombeOneillFennessey.pdf">On certain series expansions of the sine function: Catalan numbers and convergence</a>, Fib. Q., 52 (2014), 236-242.
%H A000108 J. W. Layman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.
%H A000108 Pierre Lescanne, <a href="http://arxiv.org/abs/1312.4917">An exercise on streams: convergence acceleration</a>, arXiv preprint arXiv:1312.4917 [cs.NA], 2013.
%H A000108 Hsueh-Yung Lin, <a href="http://arxiv.org/abs/1012.1756">The odd Catalan numbers modulo 2^k</a>, arXiv:1012.1756 [math.NT], 2010-2011.
%H A000108 Elżbieta Liszewska and Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.
%H A000108 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 24.
%H A000108 J.-L. Loday and B. Vallette, <a href="https://hdl.handle.net/21.11116/0000-0004-1D0F-D">Algebraic Operads</a>, version 0.999, 2012.
%H A000108 R. P. Loh, A. G. Shannon, A. F. Horadam, <a href="/A000969/a000969.pdf">Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients</a>, Preprint, 1980.
%H A000108 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The Lost Catalan Numbers And The Schröder Tableaux</a>
%H A000108 Sara Madariaga, <a href="http://arxiv.org/abs/1304.5184">Gröbner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras</a>, arXiv:1304.5184 [math.RA], 2013.
%H A000108 Colin L. Mallows and Lou Shapiro, <a href="http://www.cs.uwaterloo.ca/journals/JIS/MALLOWS/mallows.html">Balls on the Lawn</a>, J. Integer Sequences, Vol. 2, 1999, #5.
%H A000108 C. Mallows and R. J. Vanderbei, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Vanderbei/vand3.html">Which Young Tableaux Can Represent an Outer Sum?</a>, J. Int. Seq. 18 (2015) 15.9.1.
%H A000108 K Manes, A Sapounakis, I Tasoulas, P Tsikouras, <a href="http://arxiv.org/abs/1510.01952">Equivalence classes of ballot paths modulo strings of length 2 and 3</a>, arXiv preprint arXiv:1510.01952 [math.CO], 2015.
%H A000108 Toufik Mansour, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL5/Mansour/mansour6.html">Counting Peaks at Height k in a Dyck Path</a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.1
%H A000108 Toufik Mansour, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Mansour/mansour86.html">Statistics on Dyck Paths</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
%H A000108 Toufik Mansour and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Shattuck/shattuck5.html">Counting Dyck Paths According to the Maximum Distance Between Peaks and Valleys</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.1.1.
%H A000108 Toufik Mansour and Yidong Sun, <a href="http://arxiv.org/abs/0805.1274">Identities involving Narayana polynomials and Catalan numbers</a> (2008), arXiv:0805.1274 [math.CO]; Discrete Mathematics, Volume 309, Issue 12, Jun 28 2009, Pages 4079-4088
%H A000108 R. J. Marsh and P. P. Martin, <a href="http://arXiv.org/abs/math.CO/0612572">Pascal arrays: counting Catalan sets</a>, arXiv:math/0612572 [math.CO], 2006.
%H A000108 MathOverflow, <a href="https://mathoverflow.net/questions/112062/geometric-physical-probabilistic-interpretations-of-riemann-zetan1/401540#401540">Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?</a>, answer by Tom Copeland posted in Aug 2021.
%H A000108 Peter McCalla and Asamoah Nkwanta, <a href="https://arxiv.org/abs/1901.07092">Catalan and Motzkin Integral Representations</a>, arXiv:1901.07092 [math.NT], 2019.
%H A000108 Jon McCammond, <a href="http://arxiv.org/abs/math/0601687">Noncrossing partitions in surprising locations</a>, arXiv:math/0601687 [math.CO], 2006.
%H A000108 D. Merlini, R. Sprugnoli and M. C. Verri, <a href="https://doi.org/10.1016/j.dam.2003.11.012">Waiting patterns for a printer</a>Discrete Applied Mathematics, 144 (2004), 359-373; FUN with algorithm'01, Isola d'Elba, 2001.
%H A000108 Ângela Mestre and José Agapito, <a href="https://www.emis.de/journals/JIS/VOL22/Agapito/mestre8.html">A Family of Riordan Group Automorphisms</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
%H A000108 Sam Miner and I. Pak, <a href="http://www.math.ucla.edu/~pak/papers/PermShapeShort.pdf">The shape of random pattern avoiding permutations</a>, 2013.
%H A000108 Marni Mishna and Lily Yen, <a href="http://arxiv.org/abs/1106.5036">Set partitions with no k-nesting</a>, arXiv:1106.5036 [math.CO], 2011.
%H A000108 S. Mizera, <a href="https://arxiv.org/abs/1706.08527">Combinatorics and Topology of Kawai-Lewellen-Tye Relations</a>, arXiv:1706.08527 [hep-th], 2017.
%H A000108 T. Motzkin, <a href="http://dx.doi.org/10.1090/S0002-9904-1945-08486-9">The hypersurface cross ratio</a>, Bull. Amer. Math. Soc., 51 (1945), 976-984.
%H A000108 T. S. Motzkin, <a href="http://dx.doi.org/10.1090/S0002-9904-1948-09002-4">Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products</a>, Bull. Amer. Math. Soc., 54 (1948), 352-360.
%H A000108 Torsten Mütze and Franziska Weber, <a href="http://arxiv.org/abs/1111.2413">Construction of 2-factors in the middle layer of the discrete cube</a>, arXiv preprint arXiv:1111.2413 [math.CO], 2011.
%H A000108 Liviu I. Nicolaescu, <a href="http://arxiv.org/abs/math/0512496">Counting Morse functions on the 2-sphere</a>, arXiv:math/0512496 [math.GT], 2005-2006.
%H A000108 J.-C. Novelli and J.-Y. Thibon, <a href="http://arXiv.org/abs/math.CO/0405597">Free quasi-symmetric functions of arbitrary level</a>, arXiv:math/0405597 [math.CO], 2004.
%H A000108 R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, <a href="https://www.researchgate.net/publication/267170853_The_Game_of_timber">The Game of timber!</a>, 2013.
%H A000108 C. D. Olds (Proposer) and H. W. Becker (Discussion), <a href="/A000108/a000108_6.pdf">Problem 4277</a>, Amer. Math. Monthly 56 (1949), 697-699. [Annotated scanned copy]
%H A000108 Igor Pak, <a href="http://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm">Catalan Numbers Page</a>
%H A000108 Igor Pak, <a href="http://igorpak.wordpress.com/2014/02/05/who-named-catalan-numbers/?">Who Named the Catalan Numbers?</a>
%H A000108 Igor Pak, <a href="http://arxiv.org/abs/1408.5711">History of Catalan numbers</a>, arXiv:1408.5711 [math.HO], 2014.
%H A000108 Hao Pan and Zhi-Wei Sun, <a href="http://arxiv.org/abs/math.CO/0509648">A combinatorial identity with application to Catalan numbers</a>, arXiv:math/0509648 [math.CO], 2005-2006.
%H A000108 A. Panayotopoulos and P. Tsikouras, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Panayotopoulos/panayo4.html">Meanders and Motzkin Words</a>, J. Integer Seqs., Vol. 7, 2004.
%H A000108 A. Panholzer and H. Prodinger, <a href="http://doi.org/10.1016/S0012-365X(01)00282-5">Bijections for ternary trees and non-crossing trees</a>, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
%H A000108 A. Papoulis, <a href="/A000108/a000108_8.pdf">A new method of inversion of the Laplace transform</a>, Quart. Appl. Math 14 (1957), 405-414. [Annotated scan of selected pages]
%H A000108 Robert Parviainen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Parviainen/parviainen3.html">Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%H A000108 Ludovic Patey, <a href="https://arxiv.org/abs/1901.04388">Ramsey-like theorems and moduli of computation</a>, arXiv:1901.04388 [math.LO], 2019.
%H A000108 P. Peart and W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/PEART/peart1.html">Generating Functions via Hankel and Stieltjes Matrices</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
%H A000108 P. Peart and W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/PEART/pwatjis2.html">Dyck Paths With No Peaks at Height k</a>, J. Integer Sequences, 4 (2001), #01.1.3.
%H A000108 Robin Pemantle and Mark C. Wilson, <a href="http://dx.doi.org/10.1137/050643866">Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions</a>, SIAM Rev., 50 (2) (2008), 199-272.
%H A000108 K. A. Penson and J.-M. Sixdeniers, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/Catalan.html">Integral Representations of Catalan and Related Numbers</a>, J. Integer Sequences, 4 (2001), #01.2.5.
%H A000108 Karol A. Penson and Karol Zyczkowski, <a href="http://dx.doi.org/10.1103/PhysRevE.83.061118">Product of Ginibre matrices : Fuss-Catalan and Raney distribution</a>, <a href="http://arxiv.org/abs/1103.3453/">arXiv version</a>; Phys. Rev E. vol. 83, 061118 (2011).
%H A000108 Permutation Pattern Avoidance Library (PermPAL), <a href="https://permpal.com/perms/name/021/">021</a>
%H A000108 T. K. Petersen and Bridget Eileen Tenner, <a href="http://arxiv.org/abs/1202.4765">The depth of a permutation</a>, arXiv:1202.4765 [math.CO], 2012-2014.
%H A000108 Ville H. Pettersson, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p7">Enumerating Hamiltonian Cycles</a>, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
%H A000108 Vincent Pilaud, <a href="http://arxiv.org/abs/1505.07665">Brick polytopes, lattice quotients, and Hopf algebras</a>, arXiv preprint arXiv:1505.07665 [math.CO], 2015.
%H A000108 Vincent Pilaud, <a href="https://arxiv.org/abs/2205.06686">Pebble trees</a>, arXiv:2205.06686 [math.CO], 2022.
%H A000108 Maxim V. Polyakov, Kirill M. Semenov-Tian-Shansky, Alexander O. Smirnov and Alexey A. Vladimirov, <a href="https://arxiv.org/abs/1811.08449">Quasi-Renormalizable Quantum Field Theories</a>, arXiv:1811.08449 [hep-th], 2018.
%H A000108 Alexander Postnikov, <a href="http://arxiv.org/abs/math/0507163">Permutohedra, associahedra, and beyond</a>, 2005, arXiv:math/0507163  [math.CO], 2005.
%H A000108 J.-B. Priez and A. Virmaux, <a href="http://arxiv.org/abs/1411.4161">Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration</a>, arXiv preprint arXiv:1411.4161 [math.CO], 2014-2015.
%H A000108 L. Pudwell and A. Baxter, <a href="http://faculty.valpo.edu/lpudwell/slides/pp2014_pudwell.pdf">Ascent sequences avoiding pairs of patterns</a>, 2014.
%H A000108 Alon Regev, <a href="http://arxiv.org/abs/1208.3915">Enumerating Triangulations by Parallel Diagonals</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.5; arXiv preprint arXiv:1208.3915, 2012.
%H A000108 Alon Regev, Amitai Regev, and Doron Zeilberger, <a href="http://arxiv.org/abs/1507.03499">Identities in character tables of S_n</a>, arXiv preprint arXiv:1507.03499 [math.CO], 2015.
%H A000108 Amitai Regev, Nathaniel Shar, and Doron Zeilberger, <a href="http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/touchard.html">A Very Short (Bijective!) Proof of Touchard's Catalan Identity</a>, 2015.
%H A000108 Amitai Regev, Nathaniel Shar, and Doron Zeilberger, <a href="/A000108/a000108_21.pdf">A Very Short (Bijective!) Proof of Touchard's Catalan Identity</a>, [Local copy, pdf file only, no active links]
%H A000108 J.-L. Rémy, <a href="https://doi.org/10.1051/ita/1985190201791">Un procédé itératif de dénombrement d'arbres binaires et son application à leur génération aléatoire</a>, RAIRO Inform. Theor. 19 (1985), 179-195.
%H A000108 C. M. Ringel, <a href="http://arxiv.org/abs/1502.06553">The Catalan combinatorics of the hereditary artin algebras</a>, arXiv preprint arXiv:1502.06553 [math.RT], 2015.
%H A000108 J. Riordan, <a href="http://www.jstor.org/stable/2005477">The distribution of crossings of chords joining pairs of 2n points on a circle</a>, Math. Comp., 29 (1975), 215-222.
%H A000108 J. Riordan, <a href="/A003480/a003480.pdf">The distribution of crossings of chords joining pairs of 2n points on a circle</a>, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
%H A000108 N. A. Rosenberg, <a href="https://doi.org/10.1089/cmb.2006.0109">Counting coalescent histories</a>, J. Comput Biol., 14 (2007), 360-377.
%H A000108 E. Rowland and R. Yassawi, <a href="http://arxiv.org/abs/1310.8635">Automatic congruences for diagonals of rational functions</a>, arXiv preprint arXiv:1310.8635 [math.NT], 2013-2014.
%H A000108 E. Rowland and D. Zeilberger, <a href="http://arxiv.org/abs/1311.4776">A Case Study in Meta-AUTOMATION: AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences</a>, arXiv preprint arXiv:1311.4776 [math.CO], 2013.
%H A000108 Albert Sade, <a href="/A000108/a000108_17.pdf">Sur les Chevauchements des Permutations</a>, published by the author, Marseille, 1949. [Annotated scanned copy]
%H A000108 A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Tsikouras/tsikouras67.html">On the Dominance Partial Ordering of Dyck Paths</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
%H A000108 A. Sapounakis and P. Tsikouras, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Tsikouras/tsikouras43.html">On k-colored Motzkin words</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.5.
%H A000108 E. Schröder, <a href="/A000108/a000108_9.pdf">Vier combinatorische Probleme</a>, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
%H A000108 A. Schuetz and G. Whieldon, <a href="http://arxiv.org/abs/1401.7194">Polygonal Dissections and Reversions of Series</a>, arXiv preprint arXiv:1401.7194 [math.CO], 2014.
%H A000108 J. A. von Segner, <a href="https://archive.org/details/novicommentariia07impe/page/203">Enumeratio modorum, quibus figurae planae rectilineae per diagonales dividuntur in triangula</a>, Novi Comm. Acad. Scient. Imper. Petropolitanae, 7 (1758/1759), 203-209.
%H A000108 Sarah Shader, <a href="http://math.mit.edu/news/summer/RSIPapers/2013Shader.pdf">Weighted Catalan Numbers and Their Divisibility Properties</a>, Research Science Institute, MIT, 2014.
%H A000108 L. W. Shapiro, <a href="http://dx.doi.org/10.1016/0012-365X(76)90009-1">A Catalan triangle</a>, Discrete Math., 14, 83-90, 1976.
%H A000108 L. W. Shapiro, <a href="/A003517/a003517.pdf">A Catalan triangle</a>, Discrete Math. 14 (1976), no. 1, 83-90. [Annotated scanned copy]
%H A000108 D. M. Silberger, <a href="/A000108/a000108_12.pdf">Occurrences of the integer (2n-2)!/n!(n-1)!</a>, Roczniki Polskiego Towarzystwa Math. 13 (1969): 91-96. [Annotated scanned copy]
%H A000108 N. J. A. Sloane, <a href="/A000108/a000108.html">Illustration of initial terms</a>
%H A000108 N. J. A. Sloane, <a href="/A000108/a000108_16.pdf">Note on Sylvester's "On reducible cyclodes" paper</a> [Scanned copy]
%H A000108 N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 7.
%H A000108 Solomon, A. <a href="https://gdz.sub.uni-goettingen.de/id/PPN362162808_0053">Catalan monoids, monoids of local endomorphisms and their presentations</a>, Semigroup Forum 53 (1996), 351-368.
%H A000108 N. Solomon and S. Solomon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Solomon/solomon8rev.html">A natural extension of Catalan Numbers</a>, JIS 11 (2008) 08.3.5
%H A000108 Frank Sottile, <a href="http://www.math.tamu.edu/~sottile/research/pages/ERAG/S4/1.html">The Schubert Calculus of Lines</a> (a section of Enumerative Real Algebraic Geometry)
%H A000108 Michael Z. Spivey and Laura L. Steil, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
%H A000108 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers.html">Hipparchus, Plutarch, Schröder and Hough</a>, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
%H A000108 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/ec/catalan.pdf">Exercises on Catalan and Related Numbers</a>
%H A000108 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/ec#catadd">Catalan Addendum</a>
%H A000108 R. P. Stanley, <a href="/A000108/a000108.pdf">Interpretations of Catalan Numbers (Notes)</a> [Annotated scanned copy]
%H A000108 P. J. Stockmeyer, <a href="/A006078/a006078.pdf">The charm bracelet problem and its applications</a>, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
%H A000108 T. Stojadinovic, <a href="https://doi.org/10.13140/RG.2.1.2996.9129">The Catalan numbers</a>, Preprint 2015.
%H A000108 C. Stump, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Stump/stump4.html">On a New Collection of Words in the Catalan Family</a>, J. Int. Seq. 17 (2014) # 14.7.1
%H A000108 Zhi-Wei Sun and Roberto Tauraso, <a href="http://arxiv.org/abs/0709.1665">On some new congruences for binomial coefficients</a>, arXiv:0709.1665 [math.NT], 2007-2011.
%H A000108 V. S. Sunder, <a href="http://www.imsc.res.in/~sunder/catalan.pdf">Catalan numbers</a>
%H A000108 P. Tarau, <a href="https://pdfs.semanticscholar.org/eefb/e30e99067c8077e133749d83734b5daf188b.pdf">Computing with Catalan Families</a>, 2013, <a href="https://doi.org/10.1007/978-3-319-28228-2_8">doi:10.1007/978-3-319-28228-2_8</a>.
%H A000108 P. Tarau, <a href="http://arxiv.org/abs/1406.1796">A Generic Numbering System based on Catalan Families of Combinatorial Objects</a>, arXiv preprint arXiv:1406.1796 [cs.MS], 2014.
%H A000108 P. Tarau, <a href="http://arxiv.org/abs/1507.06944">A Logic Programming Playground for Lambda Terms, Combinators, Types and Tree-based Arithmetic Computations</a>, arXiv preprint arXiv:1507.06944 [cs.LO], 2015.
%H A000108 I. Tasoulas, K. Manes, A. Sapounakis and P. Tsikouras, <a href="https://arxiv.org/abs/1911.10883">Chains with Small Intervals in the Lattice of Binary Paths</a>, arXiv:1911.10883 [math.CO], 2019.
%H A000108 D. Taylor, <a href="http://www.maths.usyd.edu.au/u/don/code/Catalan/Catalan.html">Catalan Structures(up to C(7))</a>.
%H A000108 B. E. Tenner, <a href="https://arxiv.org/abs/2001.05011">Interval structures in the Bruhat and weak orders</a>, arXiv:2001.05011 [math.CO], 2020.
%H A000108 Thotsaporn "Aek" Thanatipanonda and Doron Zeilberger, <a href="https://arxiv.org/abs/1909.11546">A Multi-Computational Exploration of Some Games of Pure Chance</a>, arXiv:1909.11546 [math.CO], 2019.
%H A000108 I. Todorov, <a href="https://arxiv.org/abs/1311.7258">Studying Quantum Field Theory</a>, arXiv:1311.7258 [math-ph], 2013.
%H A000108 Michael Torpey, <a href="https://doi.org/10.17630/10023-17350">Semigroup congruences: computational techniques and theoretical applications</a>, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
%H A000108 J.-D. Urbina, J. Kuipers, Q. Hummel and K. Richter, <a href="http://arxiv.org/abs/1409.1558">Multiparticle correlations in complex scattering and the mesoscopic Boson Sampling problem</a>, arXiv preprint arXiv:1409.1558 [quant-ph], 2014.
%H A000108 A. Vieru, <a href="http://arxiv.org/abs/1107.2938">Agoh's conjecture: its proof, its generalizations, its analogues</a>, arXiv:1107.2938 [math.NT], 2011.
%H A000108 Gérard Villemin, <a href="http://villemin.gerard.free.fr/aNombre/TYPDENOM/Catalan/Catalan.htm">Nombres De Catalan</a> (French)
%H A000108 D. W. Walkup, <a href="http://dx.doi.org/10.1112/S0025579300005659">The number of plane trees</a>, Mathematika, vol. 19, No. 2 (1972), 200-204.
%H A000108 Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel and Sarfraz Khurshid, <a href="https://www.comp.nus.edu.sg/~meel/Papers/tacas20.pdf">A Study of Symmetry Breaking Predicates and Model Counting</a>, National University of Singapore (2020).
%H A000108 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinaryBracketing.html">Binary Bracketing</a>.
%H A000108 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinaryTree.html">Binary Tree</a>.
%H A000108 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CatalanNumber.html">Catalan Number</a>.
%H A000108 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DyckPath.html">Dyck Path</a>.
%H A000108 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NonassociativeProduct.html">Nonassociative Product</a>.
%H A000108 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StaircaseWalk.html">Staircase Walk</a>.
%H A000108 Wikipedia, <a href="https://en.wikipedia.org/wiki/Catalan_number">Catalan number</a>.
%H A000108 Herbert S. Wilf, <a href="https://www2.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a>, Academic Press, NY, 1990. See p. 50.
%H A000108 J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, <a href="https://ir.cwi.nl/pub/21313">Context-free coalgebras</a>, 2013.
%H A000108 Roman Witula, Damian Slota and Edyta Hetmaniok, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from255to263.pdf">Bridges between different known integer sequences</a>, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.
%H A000108 W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WOAN/hankel2.html">Hankel Matrices and Lattice Paths</a>, J. Integer Sequences, 4 (2001), #01.1.2.
%H A000108 Wen-jin Woan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Woan/woan11.html">A Recursive Relation for Weighted Motzkin Sequences</a> Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.6.
%H A000108 Wen-jin Woan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Woan2/woan35.html">Animals and 2-Motzkin Paths</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.6.
%H A000108 Wen-jin Woan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Woan/woan206.html">A Relation Between Restricted and Unrestricted Weighted Motzkin Paths</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.7.
%H A000108 Chunyan Yan and Zhicong Lin, <a href="https://arxiv.org/abs/1912.03674">Inversion sequences avoiding pairs of patterns</a>, arXiv:1912.03674 [math.CO], 2019.
%H A000108 F. Yano and H. Yoshida, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.050">Some set partition statistics in non-crossing partitions and generating functions</a>, Discr. Math., 307 (2007), 3147-3160.
%H A000108 Yan X Zhang, <a href="http://arxiv.org/abs/1508.00318">Four Variations on Graded Posets</a>, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
%H A000108 <a href="/index/Cor#core">Index entries for "core" sequences</a>
%H A000108 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>
%H A000108 <a href="/index/Par#parens">Index entries for sequences related to parenthesizing</a>
%H A000108 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H A000108 <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>
%F A000108 a(n) = binomial(2*n, n)/(n+1) = (2*n)!/(n!*(n+1)!) = A000984(n)/(n+1).
%F A000108 Recurrence: a(n) = 2*(2*n-1)*a(n-1)/(n+1) with a(0) = 1.
%F A000108 Recurrence: a(n) = Sum_{k=0..n-1} a(k)a(n-1-k).
%F A000108 G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x), and satisfies A(x) = 1 + x*A(x)^2.
%F A000108 a(n) = Product_{k=2..n} (1 + n/k).
%F A000108 a(n+1) = Sum_{i} binomial(n, 2*i)*2^(n-2*i)*a(i). - Touchard
%F A000108 It is known that a(n) is odd if and only if n=2^k-1, k=0, 1, 2, 3, ... - _Emeric Deutsch_, Aug 04 2002, corrected by _M. F. Hasler_, Nov 08 2015
%F A000108 Using the Stirling approximation in A000142 we get the asymptotic expansion a(n) ~ 4^n / (sqrt(Pi * n) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
%F A000108 Integral representation: a(n) = (1/(2*Pi))*Integral_{x=0..4} x^n*sqrt((4-x)/x). - _Karol A. Penson_, Apr 12 2001
%F A000108 E.g.f.: exp(2*x)*(I_0(2*x)-I_1(2*x)), where I_n is Bessel function. - _Karol A. Penson_, Oct 07 2001
%F A000108 a(n) = polygorial(n, 6)/polygorial(n, 3). - Daniel Dockery (peritus(AT)gmail.com), Jun 24 2003
%F A000108 G.f. A(x) satisfies ((A(x) + A(-x)) / 2)^2 = A(4*x^2). - _Michael Somos_, Jun 27 2003
%F A000108 G.f. A(x) satisfies Sum_{k>=1} k(A(x)-1)^k = Sum_{n>=1} 4^{n-1}*x^n. - Shapiro, Woan, Getu
%F A000108 a(n+m) = Sum_{k} A039599(n, k)*A039599(m, k). - _Philippe Deléham_, Dec 22 2003
%F A000108 a(n+1) = (1/(n+1))*Sum_{k=0..n} a(n-k)*binomial(2k+1, k+1). - _Philippe Deléham_, Jan 24 2004
%F A000108 a(n) = Sum_{k>=0} A008313(n, k)^2. - _Philippe Deléham_, Feb 14 2004
%F A000108 a(m+n+1) = Sum_{k>=0} A039598(m, k)*A039598(n, k). - _Philippe Deléham_, Feb 15 2004
%F A000108 a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*binomial(k, floor(k/2)). - _Paul Barry_, Jan 27 2005
%F A000108 Sum_{n>=0} 1/a(n) = 2 + 4*Pi/3^(5/2) = F(1,2;1/2;1/4) = A268813 = 2.806133050770763... (see L'Univers de Pi link). - _Gerald McGarvey_ and _Benoit Cloitre_, Feb 13 2005
%F A000108 a(n) = Sum_{k=0..floor(n/2)} ((n-2*k+1)*binomial(n, n-k)/(n-k+1))^2, which is equivalent to: a(n) = Sum_{k=0..n} A053121(n, k)^2, for n >= 0. - _Paul D. Hanna_, Apr 23 2005
%F A000108 a((m+n)/2) = Sum_{k>=0} A053121(m, k)*A053121(n, k) if m+n is even. - _Philippe Deléham_, May 26 2005
%F A000108 E.g.f. Sum_{n>=0} a(n) * x^(2*n) / (2*n)! = BesselI(1, 2*x) / x. - _Michael Somos_, Jun 22 2005
%F A000108 Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(x, B(X)) where f(u, v) = u - v + (u*v)^2 or B(x) = x + (x * B(x))^2 which implies B(-B(x)) = -x and also (1 + B^3) / B^2 = (1 - x^3) / x^2. - _Michael Somos_, Jun 27 2005
%F A000108 a(n) = a(n-1)*(4-6/(n+1)). a(n) = 2a(n-1)*(8a(n-2)+a(n-1))/(10a(n-2)-a(n-1)). - _Franklin T. Adams-Watters_, Feb 08 2006
%F A000108 Sum_{k>=1} a(k)/4^k = 1. - _Franklin T. Adams-Watters_, Jun 28 2006
%F A000108 a(n) = A047996(2*n+1, n). - _Philippe Deléham_, Jul 25 2006
%F A000108 Binomial transform of A005043. - _Philippe Deléham_, Oct 20 2006
%F A000108 a(n) = Sum_{k=0..n} (-1)^k*A116395(n,k). - _Philippe Deléham_, Nov 07 2006
%F A000108 a(n) = (1/(s-n))*Sum_{k=0..n} (-1)^k (k+s-n)*binomial(s-n,k) * binomial(s+n-k,s) with s a nonnegative free integer [H. W. Gould].
%F A000108 a(k) = Sum_{i=1..k} |A008276(i,k)| * (k-1)^(k-i) / k!. - _André F. Labossière_, May 29 2007
%F A000108 a(n) = Sum_{k=0..n} A129818(n,k) * A007852(k+1). - _Philippe Deléham_, Jun 20 2007
%F A000108 a(n) = Sum_{k=0..n} A109466(n,k) * A127632(k). - _Philippe Deléham_, Jun 20 2007
%F A000108 Row sums of triangle A124926. - _Gary W. Adamson_, Oct 22 2007
%F A000108 Limit_{n->oo} (1 + Sum_{k=0..n} a(k)/A004171(k)) = 4/Pi. - _Reinhard Zumkeller_, Aug 26 2008
%F A000108 a(n) = Sum_{k=0..n} A120730(n,k)^2 and a(k+1) = Sum_{n>=k} A120730(n,k). - _Philippe Deléham_, Oct 18 2008
%F A000108 Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, the present sequence is Phi([1]) (also Phi([1,1])). - _Gary W. Adamson_, Oct 27 2008
%F A000108 a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}...Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n) where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i < l_(i+1) and l_(i+1) <> 0 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - _Thomas Wieder_, Feb 25 2009
%F A000108 a(n) = A000680(n)/A006472(n+1). - _Mark Dols_, Jul 14 2010; corrected by _M. F. Hasler_, Nov 08 2015
%F A000108 Let A(x) be the g.f., then B(x)=x*A(x) satisfies the differential equation B'(x)-2*B'(x)*B(x)-1=0. - _Vladimir Kruchinin_, Jan 18 2011
%F A000108 Complement of A092459; A010058(a(n)) = 1. - _Reinhard Zumkeller_, Mar 29 2011
%F A000108 G.f.: 1/(1-x/(1-x/(1-x/(...)))) (continued fraction). - _Joerg Arndt_, Mar 18 2011
%F A000108 With F(x) = (1-2*x-sqrt(1-4*x))/(2*x) an o.g.f. in x for the Catalan series, G(x) = x/(1+x)^2 is the compositional inverse of F (nulling the n=0 term). - _Tom Copeland_, Sep 04 2011
%F A000108 With H(x) = 1/(dG(x)/dx) = (1+x)^3 / (1-x), the n-th Catalan number is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)), and H(x) is the o.g.f. for A115291. - _Tom Copeland_, Sep 04 2011
%F A000108 From _Tom Copeland_, Sep 30 2011: (Start)
%F A000108 With F(x) = (1-sqrt(1-4*x))/2 an o.g.f. in x for the Catalan series, G(x)= x*(1-x) is the compositional inverse and this relates the Catalan numbers to the row sums of A125181.
%F A000108 With H(x) = 1/(dG(x)/dx) = 1/(1-2x), the n-th Catalan number (offset 1) is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)). (End)
%F A000108 G.f.: (1-sqrt(1-4*x))/(2*x) = G(0) where G(k) = 1 + (4*k+1)*x/(k+1-2*x*(k+1)*(4*k+3)/(2*x*(4*k+3)+(2*k+3)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 30 2011
%F A000108 E.g.f.: exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)) = G(0) where G(k) = 1 + (4*k+1)*x/((k+1)*(2*k+1)-x*(k+1)*(2*k+1)*(4*k+3)/(x*(4*k+3)+(k+1)*(2*k+3)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 30 2011
%F A000108 E.g.f.: Hypergeometric([1/2],[2],4*x) which coincides with the e.g.f. given just above, and also by _Karol A. Penson_ further above. - _Wolfdieter Lang_, Jan 13 2012
%F A000108 A076050(a(n)) = n + 1 for n > 0. - _Reinhard Zumkeller_, Feb 17 2012
%F A000108 a(n) = A208355(2*n-1) = A208355(2*n) for n > 0. - _Reinhard Zumkeller_, Mar 04 2012
%F A000108 a(n+1) = A214292(2*n+1,n) = A214292(2*n+2,n). - _Reinhard Zumkeller_, Jul 12 2012
%F A000108 G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = k*(4*x+1) + 2*x + 2 - x*(2*k+3)*(2*k+4)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - _Sergei N. Gladkovskii_, Sep 20 2012
%F A000108 G.f.: hypergeom([1/2,1],[2],4*x). - _Joerg Arndt_, Apr 06 2013
%F A000108 Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,1,-1/2-n,-1)/(n+1). - _Karol A. Penson_, Jul 28 2013
%F A000108 For n > 0: a(n) = sum of row n in triangle A001263. - _Reinhard Zumkeller_, Oct 10 2013
%F A000108 a(n) = binomial(2n,n-1)/n and a(n) mod n = binomial(2n,n) mod n = A059288(n). - _Jonathan Sondow_, Dec 14 2013
%F A000108 a(n-1) = Sum_{t1+2*t2+...+n*tn=n} (-1)^(1+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*a(1)^t1*a(2)^t2*...*a(n)^tn. - _Mircea Merca_, Feb 27 2014
%F A000108 a(n) = Sum_{k=1..n} binomial(n+k-1,n)/n if n > 0. _Alexander Adamchuk_, Mar 25 2014
%F A000108 a(n) = -2^(2*n+1) * binomial(n-1/2, -3/2). - _Peter Luschny_, May 06 2014
%F A000108 a(n) = (4*A000984(n) - A000984(n+1))/2. - _Stanislav Sykora_, Aug 09 2014
%F A000108 a(n) = A246458(n) * A246466(n). - _Tom Edgar_, Sep 02 2014
%F A000108 a(n) = (2*n)!*[x^(2*n)]hypergeom([],[2],x^2). - _Peter Luschny_, Jan 31 2015
%F A000108 a(n) = 4^(n-1)*hypergeom([3/2, 1-n], [3], 1). - _Peter Luschny_, Feb 03 2015
%F A000108 a(2n) = 2*A000150(2n); a(2n+1) = 2*A000150(2n+1) + a(n). - _John Bodeen_, Jun 24 2015
%F A000108 a(n) = Sum_{t=1..n+1} n^(t-1)*abs(Stirling1(n+1, t)) / Sum_{t=1..n+1} abs(Stirling1(n+1, t)), for n > 0, see (10) in Cereceda link. - _Michel Marcus_, Oct 06 2015
%F A000108 a(n) ~ 4^(n-2)*(128 + 160/N^2 + 84/N^4 + 715/N^6 - 10180/N^8)/(N^(3/2)*Pi^(1/2)) where N = 4*n+3. - _Peter Luschny_, Oct 14 2015
%F A000108 a(n) = Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*binomial(n+1-k,k)*a(n-k) if n > 0; and a(0) = 1. - _David Pasino_, Jun 29 2016
%F A000108 Sum_{n>=0} (-1)^n/a(n) = 14/25 - 24*arccsch(2)/(25*sqrt(5)) = 14/25 - 24*A002390/(25*sqrt(5)) = 0.353403708337278061333... - _Ilya Gutkovskiy_, Jun 30 2016
%F A000108 C(n) = (1/n) * Sum_{i+j+k=n-1} C(i)*C(j)*C(k)*(k+1), n >= 1. - _Yuchun Ji_, Feb 21 2016
%F A000108 C(n) = 1 + Sum_{i+j+k<n-1} C(i)*C(j)*C(k). - _Yuchun Ji_, Sep 01 2016
%F A000108 a(n) = A001700(n) - A162551(n) = binomial(2*n+1,n+1). - 2*binomial(2*n,n-1). - _Taras Goy_, Aug 09 2018
%F A000108 G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x) = 2F1(1/2,1;2;4*x). G.f. A(x) satisfies A = 1 + x*A^2. - _R. J. Mathar_, Nov 17 2018
%F A000108 C(n) = 1 + Sum_{i=0..n-1} A000245(i). - _Yuchun Ji_, Jan 10 2019
%F A000108 From _A.H.M. Smeets_, Apr 11 2020: (Start)
%F A000108 (1+sqrt(1+4*x))/2 = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4; and sqrt(x+sqrt(x+sqrt(x+...))) = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4 and x <> 0. (End)
%F A000108 a(3n+1)*a(5n+4)*a(15n+10) = a(3n+2)*a(5n+2)*a(15n+11). The first case of Catalan product equation of a triple partition of 23n+15. - _Yuchun Ji_, Sep 27 2020
%F A000108 a(n) = 4^n * (-1)^(n+1) * 3F2[{n + 1,n + 1/2,n}, {3/2,1}, -1], n >= 1. - _Sergii Voloshyn_, Oct 22 2020
%F A000108 a(n) = 2^(1 + 2 n) * (-1)^(n)/(1 + n) * 3F2[{n, 1/2 + n, 1 + n}, {1/2, 1}, -1], n >= 1. - _Sergii Voloshyn_, Nov 08 2020
%F A000108 a(n) = (1/Pi)*4^(n+1)*Integral_{x=0..Pi/2} cos(x)^(2*n)*sin(x)^2 dx. - _Greg Dresden_, May 30 2021
%F A000108 From _Peter Bala_, Aug 17 2021: (Start)
%F A000108 G.f. A(x) satisfies A(x) = 1/sqrt(1 - 4*x) * A( -x/(1 - 4*x) ) and (A(x) + A(-x))/2 = 1/sqrt(1 - 4*x) * A( -2*x/(1 - 4*x) ); these are the cases k = 0 and k = -1 of the general formula 1/sqrt(1 - 4*x) * A( (k-1)*x/(1 - 4*x) ) = Sum_{n >= 0} ((k^(n+1) - 1)/(k - 1))*Catalan(n)*x^n.
%F A000108 2 - sqrt(1 - 4*x)/A( k*x/(1 - 4*x) ) = 1 + Sum_{n >= 1} (1 + (k + 1)^n) * Catalan(n-1)*x^n. (End)
%F A000108 Sum_{n>=0} a(n)*(-1/4)^n = 2*(sqrt(2)-1) (A163960). - _Amiram Eldar_, Mar 22 2022
%F A000108 0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n>=0. - _Michael Somos_, Dec 12 2022
%F A000108 G.f.: (offset 1) 1/G(x), with G(x) = 1 - 2*x - x^2/G(x) (Jacobi continued fraction). - _Nikolaos Pantelidis_, Feb 01 2023
%F A000108 a(n) = K^(2n+1, n, 1) for all n >= 0, where K^(n, s, x) is the Krawtchouk polynomial defined to be Sum_{k=0..s} (-1)^k * binomial(n-x, s-k) * binomial(x, k). - _Vladislav Shubin_, Aug 17 2023
%F A000108 From _Peter Bala_, Feb 03 2024: (Start)
%F A000108 The g.f. A(x) satisfies the following functional equations:
%F A000108 A(x) = 1 + x/(1 - 4*x) * A(-x/(1 - 4*x))^2,
%F A000108 A(x^2) = 1/(1 - 2*x) * A(- x/(1 - 2*x))^2 and, for arbitrary k,
%F A000108 1/(1 - k*x) * A(x/(1 - k*x))^2 = 1/(1 - (k+4)*x) * A(-x/(1 - (k+4)*x))^2. (End)
%F A000108 a(n) = A363448(n) + A363449(n). - _Julien Rouyer_, Jun 28 2024
%e A000108 From _Joerg Arndt_ and Greg Stevenson, Jul 11 2011: (Start)
%e A000108 The following products of 3 transpositions lead to a 4-cycle in S_4:
%e A000108 (1,2)*(1,3)*(1,4);
%e A000108 (1,2)*(1,4)*(3,4);
%e A000108 (1,3)*(1,4)*(2,3);
%e A000108 (1,4)*(2,3)*(2,4);
%e A000108 (1,4)*(2,4)*(3,4). (End)
%e A000108 G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
%e A000108 For n=3, a(3)=5 since there are exactly 5 binary sequences of length 7 in which the number of ones first exceed the number of zeros at entry 7, namely, 0001111, 0010111, 0011011, 0100111, and 0101011. - _Dennis P. Walsh_, Apr 11 2012
%e A000108 From _Joerg Arndt_, Jun 30 2014: (Start)
%e A000108 The a(4) = 14 branching sequences of the (ordered) trees with 4 non-root nodes are (dots denote zeros):
%e A000108 01:  [ 1 1 1 1 . ]
%e A000108 02:  [ 1 1 2 . . ]
%e A000108 03:  [ 1 2 . 1 . ]
%e A000108 04:  [ 1 2 1 . . ]
%e A000108 05:  [ 1 3 . . . ]
%e A000108 06:  [ 2 . 1 1 . ]
%e A000108 07:  [ 2 . 2 . . ]
%e A000108 08:  [ 2 1 . 1 . ]
%e A000108 09:  [ 2 1 1 . . ]
%e A000108 10:  [ 2 2 . . . ]
%e A000108 11:  [ 3 . . 1 . ]
%e A000108 12:  [ 3 . 1 . . ]
%e A000108 13:  [ 3 1 . . . ]
%e A000108 14:  [ 4 . . . . ]
%e A000108 (End)
%p A000108 A000108 := n->binomial(2*n,n)/(n+1);
%p A000108 G000108 := (1 - sqrt(1 - 4*x)) / (2*x);
%p A000108 spec := [ A, {A=Prod(Z,Sequence(A))}, unlabeled ]: [ seq(combstruct[count](spec, size=n+1), n=0..42) ];
%p A000108 with(combstruct): bin := {B=Union(Z,Prod(B,B))}: seq(count([B,bin,unlabeled],size=n+1), n=0..25); # _Zerinvary Lajos_, Dec 05 2007
%p A000108 gser := series(G000108, x=0, 42): seq(coeff(gser, x, n), n=0..41); # _Zerinvary Lajos_, May 21 2008
%p A000108 seq((2*n)!*coeff(series(hypergeom([],[2],x^2),x,2*n+2),x,2*n),n=0..30); # _Peter Luschny_, Jan 31 2015
%p A000108 A000108List := proc(m) local A, P, n; A := [1, 1]; P := [1];
%p A000108 for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
%p A000108 A := [op(A), P[-1]] od; A end: A000108List(31); # _Peter Luschny_, Mar 24 2022
%t A000108 Table[(2 n)!/n!/(n + 1)!, {n, 0, 20}]
%t A000108 Table[4^n Gamma[n + 1/2]/(Sqrt[Pi] Gamma[n + 2]), {n, 0, 20}] (* _Eric W. Weisstein_, Oct 31 2024 *)
%t A000108 Table[Hypergeometric2F1[1 - n, -n, 2, 1], {n, 0, 20}] (* _Richard L. Ollerton_, Sep 13 2006 *)
%t A000108 Table[CatalanNumber @ n, {n, 0, 20}] (* _Robert G. Wilson v_, Feb 15 2011 *)
%t A000108 CatalanNumber[Range[0, 20]] (* _Eric W. Weisstein_, Oct 31 2024 *)
%t A000108 CoefficientList[InverseSeries[Series[x/Sum[x^n, {n, 0, 31}], {x, 0, 31}]]/x, x] (* _Mats Granvik_, Nov 24 2013 *)
%t A000108 CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(2 x), {x, 0, 20}], x] (* _Stefano Spezia_, Aug 31 2018 *)
%o A000108 (PARI) a(n)=binomial(2*n,n)/(n+1) \\ _M. F. Hasler_, Aug 25 2012
%o A000108 (PARI) a(n) = (2*n)! / n! / (n+1)!
%o A000108 (PARI) a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + x + O(x^2); while(m<=n, m*=2; A = sqrt(subst(A, x, 4*x^2)); A += (A - 1) / (2*x*A)); polcoeff(A, n));
%o A000108 (PARI) {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + x)^2 + x * O(x^n)), n))}; /* _Michael Somos_ */
%o A000108 (PARI) (recur(a,b)=if(b<=2,(a==2)+(a==b)+(a!=b)*(1+a/2), (1+a/b)*recur(a,b-1))); a(n)=recur(n,n); \\ _R. J. Cano_, Nov 22 2012
%o A000108 (PARI) x='x+O('x^40); Vec((1-sqrt(1-4*x))/(2*x)) \\ _Altug Alkan_, Oct 13 2015
%o A000108 (MuPAD) combinat::dyckWords::count(n) $ n = 0..38 // _Zerinvary Lajos_, Apr 14 2007
%o A000108 (Magma) C:= func< n | Binomial(2*n,n)/(n+1) >; [ C(n) : n in [0..60]];
%o A000108 (Magma) [Catalan(n): n in [0..40]]; // _Vincenzo Librandi_, Apr 02 2011
%o A000108 (Haskell)
%o A000108 import Data.List (genericIndex)
%o A000108 a000108 n = genericIndex a000108_list n
%o A000108 a000108_list = 1 : catalan [1] where
%o A000108    catalan cs = c : catalan (c:cs) where
%o A000108       c = sum $ zipWith (*) cs $ reverse cs
%o A000108 -- _Reinhard Zumkeller_, Nov 12 2011
%o A000108 a000108 = map last $ iterate (scanl1 (+) . (++ [0])) [1]
%o A000108 -- _David Spies_, Aug 23 2015
%o A000108 (Sage) [catalan_number(i) for i in range(27)] # _Zerinvary Lajos_, Jun 26 2008
%o A000108 (Sage) # Generalized algorithm of L. Seidel
%o A000108 def A000108_list(n) :
%o A000108     D = [0]*(n+1); D[1] = 1
%o A000108     b = True; h = 1; R = []
%o A000108     for i in range(2*n-1) :
%o A000108         if b :
%o A000108             for k in range(h,0,-1) : D[k] += D[k-1]
%o A000108             h += 1; R.append(D[1])
%o A000108         else :
%o A000108             for k in range(1,h, 1) : D[k] += D[k+1]
%o A000108         b = not b
%o A000108     return R
%o A000108 A000108_list(31) # _Peter Luschny_, Jun 02 2012
%o A000108 (Maxima) A000108(n):=binomial(2*n,n)/(n+1)$ makelist(A000108(n),n,0,30); /* _Martin Ettl_, Oct 24 2012 */
%o A000108 (Python)
%o A000108 from gmpy2 import divexact
%o A000108 A000108 = [1, 1]
%o A000108 for n in range(1, 10**3):
%o A000108     A000108.append(divexact(A000108[-1]*(4*n+2),(n+2))) # _Chai Wah Wu_, Aug 31 2014
%o A000108 (Python)
%o A000108 # Works in Sage also.
%o A000108 A000108 = [1]
%o A000108 for n in range(1000):
%o A000108     A000108.append(A000108[-1]*(4*n+2)//(n+2)) # _Günter Rote_, Nov 08 2023
%o A000108 (GAP) A000108:=List([0..30],n->Binomial(2*n,n)/(n+1)); # _Muniru A Asiru_, Feb 17 2018
%Y A000108 Cf. A000142, A000245, A000344, A000588, A000957, A000984, A001392, A001453, A001791, A002057, A002420, A003046, A003517, A003518, A003519, A006480, A008276, A008549, A014137, A014138, A014140, A022553 (inv. Eul. trans.), A024492, A032357, A032443, A039599, A048990, A059288, A068875, A069640, A086117, A088327 (Eul. trans.), A094216, A094638, A094639, A098597, A099731, A119822, A120304, A124926, A129763, A137697, A154559, A161581, A167892, A167893, A179277, A211611, A275431 (multisets).
%Y A000108 A row of A060854.
%Y A000108 See A001003, A001190, A001699, A000081 for other ways to count parentheses.
%Y A000108 Enumerates objects encoded by A014486.
%Y A000108 A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
%Y A000108 Cf. A051168 (diagonal of the square array described).
%Y A000108 Cf. A033552, A176137 (partitions into Catalan numbers).
%Y A000108 Cf. A000753, A000736 (Boustrophedon transforms).
%Y A000108 Cf. A120303 (largest prime factor of Catalan number).
%Y A000108 Cf. A121839 (reciprocal Catalan constant), A268813.
%Y A000108 Cf. A038003, A119861, A119908, A120274, A120275 (odd Catalan number).
%Y A000108 Cf. A002390 (decimal expansion of natural logarithm of golden ratio).
%Y A000108 Coefficients of square root of the g.f. are A001795/A046161.
%Y A000108 For a(n) mod 6 see A259667.
%Y A000108 For a(n) in base 2 see A264663.
%Y A000108 Hankel transforms with first terms omitted: A001477, A006858, A091962, A078920, A123352, A368025.
%Y A000108 Cf. A001147, A163960.
%Y A000108 Cf. A332602 (conjectured production matrix).
%Y A000108 Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A001764 {4,oo}.
%K A000108 core,nonn,easy,eigen,nice,changed
%O A000108 0,3
%A A000108 _N. J. A. Sloane_