cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000116 Number of even sequences with period 2n (bisection of A000013).

This page as a plain text file.
%I A000116 M1156 N0440 #47 Mar 14 2024 05:20:00
%S A000116 1,2,4,8,20,56,180,596,2068,7316,26272,95420,349716,1290872,4794088,
%T A000116 17896832,67110932,252648992,954444608,3616828364,13743921632,
%U A000116 52357746896,199911300472,764877836468,2932031358484,11258999739560,43303843861744,166799988689300
%N A000116 Number of even sequences with period 2n (bisection of A000013).
%D A000116 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000116 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000116 Alois P. Heinz, <a href="/A000116/b000116.txt">Table of n, a(n) for n = 0..1000</a>
%H A000116 E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.
%F A000116 a(2*n) + a(n) = 2 * A000208(2*n); a(2*n+1) = 2 * A000208(2*n+1). - _Reinhard Zumkeller_, Jul 08 2013
%F A000116 a(n) ~ 4^(n-1) / n. - _Cedric Lorand_, Apr 18 2022
%p A000116 with(numtheory):
%p A000116 a:= n-> `if`(n=0, 1, add(phi(2*d)*2^(2*n/d), d=divisors(2*n))/(4*n)):
%p A000116 seq(a(n), n=0..20);  # _Alois P. Heinz_, Mar 25 2012
%t A000116 a[n_] := Sum[ EulerPhi[2d]*2^(2n/d), {d, Divisors[2n]}]/(4n); a[0]=1; Table[a[n], {n, 0, 27}] (* _Jean-François Alcover_, Sep 13 2012, after _Alois P. Heinz_ *)
%o A000116 (Haskell)
%o A000116 a000116 n = a000116_list !! n
%o A000116 a000116_list = bis a000013_list where bis (x:_:xs) = x : bis xs
%o A000116 -- _Reinhard Zumkeller_, Jul 08 2013
%Y A000116 Cf. A000013, A026119.
%K A000116 nonn,easy,nice
%O A000116 0,2
%A A000116 _N. J. A. Sloane_
%E A000116 More terms from _David W. Wilson_, Jan 13 2000