cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000131 Number of asymmetrical dissections of n-gon.

Original entry on oeis.org

2, 5, 21, 61, 214, 669, 2240, 7330, 24695, 83257, 284928, 981079, 3410990, 11937328, 42075242, 149171958, 531866972, 1905842605, 6861162880, 24805692978, 90035940227, 327987890608, 1198853954688, 4395797189206, 16165195705544, 59609156824273, 220373268471398, 816677398144221
Offset: 7

Views

Author

Keywords

Comments

This sequence, U_n in Guy's 1958 paper, counts triangulations of a regular n-gon into n-2 triangles with no nonidentity symmetries. Triangulations related by a symmetry of the underlying n-gon do not count as distinct. - Joseph Myers, Jun 21 2012

References

  • R. K. Guy, Dissecting a polygon into triangles, Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000063.

Programs

  • Mathematica
    catalan[n_] := Block[{c = Binomial[2 n, n]/(n + 1)}, If[IntegerQ[c], c, 0]]; f[n_] := (catalan[n - 2] - (n/2) catalan[n/2 - 1] - n*catalan[Floor[n/2] - 1] - (n/3)*catalan[n/3 - 1] + n*catalan[n/4 - 1] + n*catalan[n/6 - 1])/(2 n); Array[f, 28, 7] (* Robert G. Wilson v, Jun 23 2014 *)
  • PARI
    C(n)=if(denominator(n)==1,binomial(2*n,n)/(n+1),0)
    a(n)=(C(n-2)/n-C(n/2-1)/2-C(n\2-1)-C(n/3-1)/3+C(n/4-1)+C(n/6-1))/2 \\ Charles R Greathouse IV, Apr 05 2013

Formula

a(n) = (Catalan(n-2) - (n/2)*Catalan(n/2 - 1) - n*Catalan(floor(n/2) - 1) - (n/3)*Catalan(n/3 - 1) + n*Catalan(n/4 - 1) + n*Catalan(n/6 - 1))/(2*n), where Catalan(x) = 0 for noninteger x (derived from Guy's 1958 paper). - Joseph Myers, Jun 21 2012

Extensions

Extended by Joseph Myers, Jun 21 2012