This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000152 #42 Oct 02 2018 05:07:05 %S A000152 1,32,480,4480,29152,140736,525952,1580800,3994080,8945824,18626112, %T A000152 36714624,67978880,118156480,197120256,321692928,509145568,772845120, %U A000152 1143441760,1681379200,2428524096,3392205824,4658843520,6411152640 %N A000152 Number of ways of writing n as a sum of 16 squares. %D A000152 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314. %D A000152 E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 107. %H A000152 T. D. Noe, <a href="/A000152/b000152.txt">Table of n, a(n) for n = 0..10000</a> %H A000152 Shi-Chao Chen, <a href="http://dx.doi.org/10.1016/j.jnt.2010.01.011">Congruences for rs(n)</a>, Journal of Number Theory, Volume 130, Issue 9, September 2010, Pages 2028-2032. %H A000152 S. C. Milne, <a href="http://dx.doi.org/10.1023/A:1014865816981">Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions and Schur functions</a>, Ramanujan J., 6 (2002), 7-149. %H A000152 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A000152 G.f.: theta_3(0,q)^16, where theta_3 is the 3rd Jacobi theta function. - _Ilya Gutkovskiy_, Jan 13 2017 %F A000152 a(n) = (32/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, May 27 2017 %p A000152 (sum(x^(m^2),m=-10..10))^16; %p A000152 # Alternative: %p A000152 A000152list := proc(len) series(JacobiTheta3(0, x)^16, x, len+1); %p A000152 seq(coeff(%, x, j), j=0..len-1) end: A000152list(24); # _Peter Luschny_, Oct 02 2018 %t A000152 Table[SquaresR[16, n], {n, 0, 23}] (* _Ray Chandler_, Nov 28 2006 *) %t A000152 CoefficientList[EllipticTheta[3, 0, x]^16 + O[x]^24, x] (* _Jean-François Alcover_, Jul 06 2017 *) %o A000152 (PARI) first(n)=my(x='x); x+=O(x^(n+1)); Vec((2*sum(k=1,sqrtint(n),x^k^2) + 1)^16) \\ _Charles R Greathouse IV_, Jul 29 2016 %Y A000152 Row d=16 of A122141 and of A319574, 16th column of A286815. %Y A000152 Cf. A022047(n) = A000152(2*n). %K A000152 nonn,easy %O A000152 0,2 %A A000152 _N. J. A. Sloane_ %E A000152 Extended by _Ray Chandler_, Nov 28 2006