A000167 Nearest integer to modified Bessel function K_n(2).
0, 0, 0, 1, 2, 9, 49, 306, 2188, 17810, 162482, 1642635, 18231462, 220420179, 2883693795, 40592133316, 611765693528, 9828843229764, 167702100599524, 3028466654021205, 57708568527002410, 1157199837194069405
Offset: 0
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 429.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for sequences related to Bessel functions or polynomials
Programs
-
Maple
Digits := 60: A000167 := proc(n) round( evalf ( BesselK( n,2 ) )); end;
-
Mathematica
Table[BesselK[n, 2] // Round, {n, 0, 21}] (* Jean-François Alcover, Mar 12 2014 *)
-
PARI
a(n)=round(besselk(n,2)) \\ Charles R Greathouse IV, Jul 29 2016
Formula
b(n) = (n-1)*b(n-1) + b(n-2) with b(n) = K_n(2). - Christian Krause, Dec 08 2023
Extensions
More terms from Herman P. Robinson