cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000195 a(n) = floor(log(n)).

This page as a plain text file.
%I A000195 #40 Aug 28 2024 04:25:28
%S A000195 0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%T A000195 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%U A000195 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
%N A000195 a(n) = floor(log(n)).
%C A000195 Equals A004233(n) - 1 for n > 1.
%C A000195 Does not satisfy Benford's law [Whyman et al., 2016] - _N. J. A. Sloane_, Feb 12 2017
%H A000195 T. D. Noe, <a href="/A000195/b000195.txt">Table of n, a(n) for n=1..10000</a>
%H A000195 G. Whyman, N. Ohtori, E. Shulzinger, and Ed. Bormashenko, <a href="https://doi.org/10.1016/j.physa.2016.06.054">Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?</a>, Physica A: Statistical Mechanics and its Applications, 461, 595-601 (2016).
%H A000195 <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>
%F A000195 Conjecture: a(n) = floor(3*n^2*(n^(1/(3*n^2))-1)), checked for n <= 10^6. - _Joseph M. Shunia_, Aug 02 2024
%p A000195 Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];
%t A000195 Floor@ Log@ Range@ 105 (* _Michael De Vlieger_, Aug 21 2017 *)
%o A000195 (PARI) a(n)=floor(log(n))
%o A000195 (Haskell)
%o A000195 a000195 = floor . log . fromIntegral  -- _Reinhard Zumkeller_, Mar 17 2015
%Y A000195 Cf. A000193 (nearest integer to log(n)), A004233.
%Y A000195 Cf. A000523.
%K A000195 nonn,easy
%O A000195 1,8
%A A000195 _N. J. A. Sloane_