This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000206 M2372 N0940 #34 Apr 30 2022 12:18:27 %S A000206 1,1,3,4,12,22,71,181,618,1957,6966,24367,89010,324766,1204815, %T A000206 4482400,16802826,63195016,238711285,904338163,3436380192,13089961012, %U A000206 49979421837,191221556269,733014218506,2814758323498,10825986453978,41700030726757,160842946895004 %N A000206 Even sequences with period 2n. %C A000206 "Even" orbits of binary necklaces of length 2n under group D_n X S_2. %D A000206 E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665. %D A000206 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000206 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000206 Alois P. Heinz, <a href="/A000206/b000206.txt">Table of n, a(n) for n = 0..1000</a> %H A000206 N. J. A. Sloane, <a href="/A000013/a000013.txt">Maple code for this and related sequences</a> %F A000206 a(0)=1, a(n) = (A000011(2*n) + A000011(n) + 4^(n/2-1) - 2^(n/2-1))/2 if n is even, a(n) = A000011(2*n)/2 if n is odd. - _Randall L Rathbun_, Jan 11 2002 %p A000206 with(numtheory): %p A000206 b:= proc(n) option remember; %p A000206 `if`(n=0, 1, 2^(floor(n/2)-1) %p A000206 +add(phi(2*d) *2^(n/d), d=divisors(n))/(4*n)) %p A000206 end: %p A000206 a:= n-> `if`(n=0, 1, `if`(irem(n, 2)=0, %p A000206 (b(2*n) +b(n) +4^(n/2-1) -2^(n/2-1))/2, b(2*n)/2)): %p A000206 seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 25 2012 %t A000206 a[0] = 1; a11[n_] := Fold[#1 + EulerPhi[2*#2]*(2^(n/#2)/(2*n)) & , 2^Floor[n/2], Divisors[n]]/2; a[(n_)?EvenQ] := (a11[2*n] + a11[n] + 4^(n/2 - 1) - 2^(n/2 - 1))/2; a[(n_)?OddQ] := a11[2*n]/2; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Sep 01 2011, after PARI prog. *) %o A000206 (PARI) {A000206(n)=if(n==0,1, if(n%2==0,(A000011(2*n)+A000011(n)+4^(n/2-1)-2^(n/2-1))/2, A000011(2*n)/2))} \\ _Randall L Rathbun_, Jan 11 2002 %Y A000206 Cf. A000011, A000013, A000208. %K A000206 nonn,easy,nice %O A000206 0,3 %A A000206 _N. J. A. Sloane_ %E A000206 More terms from _Randall L Rathbun_, Jan 11 2002