cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000231 Number of inequivalent Boolean functions of n variables under action of complementing group.

This page as a plain text file.
%I A000231 M2702 N1083 #42 Jan 27 2023 12:13:20
%S A000231 2,3,7,46,4336,134281216,288230380379570176,
%T A000231 2658455991569831764110243006194384896,
%U A000231 452312848583266388373324160190187140390789016525312000869601987902398529536
%N A000231 Number of inequivalent Boolean functions of n variables under action of complementing group.
%C A000231 The next term has 152 digits. - _Harvey P. Dale_, Jun 21 2011
%D A000231 M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
%D A000231 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000231 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (Includes this sequence, correctly, although in the Preface on page viii 4336 is mis-typed as 4436).
%H A000231 Michael De Vlieger, <a href="/A000231/b000231.txt">Table of n, a(n) for n = 0..11</a>
%H A000231 R. L. Ashenhurst, <a href="https://doi.org/10.1145/609784.609825">The application of counting techniques</a>, Proc. ACM Nat. Mtg., Pittsburg, 1952, 293-305.
%H A000231 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
%H A000231 M. A. Harrison, <a href="https://www.jstor.org/stable/2946322">The number of transitivity sets of Boolean functions</a>, J. Soc. Indust. Appl. Math., 11 (1963), 806-828.
%H A000231 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>
%F A000231 a(n) = (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n.
%p A000231 a:= n-> (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n:
%p A000231 seq(a(n), n=0..8);  # _Alois P. Heinz_, Jan 27 2023
%t A000231 Table[(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n,{n,10}] (* _Harvey P. Dale_, Jun 21 2011 *)
%o A000231 (PARI) a(n)=(2^(2^n-n)+(2^n-1)*2^(2^(n-1)-n)) \\ _Charles R Greathouse IV_, Jul 29 2016
%Y A000231 Cf. A051502.
%Y A000231 Row sums of A054724.
%K A000231 easy,nonn,nice
%O A000231 0,1
%A A000231 _N. J. A. Sloane_
%E A000231 More terms from _Vladeta Jovovic_, Apr 20 2000
%E A000231 a(0)=2 prepended by _Alois P. Heinz_, Jan 27 2023