cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000234 Partitions into non-integral powers (see Comments for precise definition).

Original entry on oeis.org

1, 3, 8, 18, 37, 72, 136, 251, 445, 770, 1312, 2202, 3632, 5908, 9501, 15111, 23781, 37083, 57293, 87813, 133530, 201574, 302265, 450317, 666743, 981488, 1437003, 2092976, 3033253, 4375104, 6282026, 8981046, 12786327, 18131492, 25612628
Offset: 1

Views

Author

Keywords

Comments

This sequence gives the number of solutions to the inequality Sum_{i=1,2,...} xi^(2/3) <= n with the constraint that 1 <= x1 <= x2 <= x3 <= ... is a list of at least 1 and no more than n integers. - R. J. Mathar, Oct 19 2007

Examples

			a(3)=8 counts 5 partitions with 1 term, explicitly { 1^(2/3), 2^(2/3), 3^(2/3), 4^(2/3), 5^(2/3) }, 2 partitions into sums of 2 terms { 1^(2/3) + 1^(2/3), 1^(2/3) + 2^(2/3) } and one partition into a sum of three terms { 1^(2/3) + 1^(2/3) + 1^(2/3) }.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    fs:=n->floor(simplify(n)): a:=proc(i, m, k) options remember: local s,l,j,m2: if(k=1) then RETURN(1) else s:=0: l:=fs(m^(3/2)): for j from 1 to min(l,i) do m2:=m-j^(2/3): if(fs(m2)>=1) then s:=s+a(j, m2, k-1) fi: s:=s+1 od: RETURN(s) fi: end: seq(a(fs(n^(3/2)), n, n),n=1..19); # Herman Jamke (hermanjamke(AT)fastmail.fm), May 03 2008
  • Mathematica
    fs[n_] := Floor[Simplify[n]]; a[i_, m_, k_] := a[i, m, k] = Module[{s, l, j, m2}, If[k == 1, Return[1], s = 0; l = fs[m^(3/2)]; For[j = 1, j <= Min[l, i], j++, m2 = m - j^(2/3); If[fs[m2] >= 1, s = s + a[j, m2, k-1] ]; s = s+1]; Return[s]]]; A000234 = Table[an = a[fs[n^(3/2)], n, n]; Print["a(", n, ") = ", an]; an, {n, 1, 19}] (* Jean-François Alcover, Feb 06 2016, after Herman Jamke *)

Extensions

More terms from R. J. Mathar, Oct 19 2007
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 03 2008
a(20)-a(35) from Jon E. Schoenfield, Jan 17 2009