This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000264 M2974 N1203 #31 Jan 01 2019 06:34:05 %S A000264 1,1,3,14,80,518,3647,27274,213480,1731652,14455408,123552488, %T A000264 1077096124,9548805240,85884971043,782242251522,7203683481720, %U A000264 66989439309452,628399635777936,5940930064989720,56562734108608536 %N A000264 Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle. %D A000264 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000264 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000264 Vincenzo Librandi, <a href="/A000264/b000264.txt">Table of n, a(n) for n = 1..200</a> %H A000264 L. B. Richmond, <a href="http://dx.doi.org/10.1016/0095-8956(76)90031-9">On Hamiltonian polygons</a>, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 81--87. MR0432491 (55 #5479) [See v_n]. %H A000264 W. T. Tutte, <a href="http://dx.doi.org/10.4153/CJM-1962-032-x">A census of Hamiltonian polygons</a>, Canad. J. Math., 14 (1962), 402-417. %F A000264 Let b(n)=(2n)!*(2n+2)!/(2*n!*(n+1)!^2*(n+2)!). Let B(x) be the generating function producing b(n), and A(x) be the generating function producing a(n). Then these sequences satisfy the functional equation B(x)=A(x(1+2*B(x))^2). - _Sean A. Irvine_, Apr 05 2010 %t A000264 max = 21; b[n_] := (2n)!*(2n + 2)!/(2*n!*(n + 1)!^2*(n + 2)!); b[0] = 0; bf[x_] := Sum[b[n]*x^n, {n, 0, max}]; Clear[a]; a[0] = 0; a[1] = a[2] = 1; af[x_] := Sum[a[n]*x^n, {n, 0, max}]; se = Series[bf[x] - af[x*(1 + 2*bf[x])^2], {x, 0, max}] // Normal; Table[a[n], {n, 1, max}] /. SolveAlways[se == 0, x] // First (* _Jean-François Alcover_, Jan 31 2013, after _Sean A. Irvine_ *) %Y A000264 Cf. A000309, A000356, A004304. %K A000264 nonn,nice %O A000264 1,3 %A A000264 _N. J. A. Sloane_ %E A000264 Better definition from _Michael Albert_, Oct 24 2008 %E A000264 More terms from _Sean A. Irvine_, Apr 05 2010