cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000305 Number of certain rooted planar maps.

Original entry on oeis.org

1, 4, 18, 89, 466, 2537, 14209, 81316, 473338, 2793454, 16674417, 100487896, 610549829, 3735850007, 23000055178, 142370597601, 885521350882, 5531501612071, 34686798239678, 218273864005214, 1377897874711437
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A046652.

Programs

  • Maple
    with(linalg): T := proc(n,k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!,j=k..min(n,2*k-1))/(2*n-k+1)! else 0 fi end:A := matrix(30,30,T): seq(sum(A[i,j],j=1..i),i=1..30);
    R := RootOf(x-t*(t-1)^2, t); ogf := series((R+1)/((1-R-R^2)*(R-1)^2), x=0, 20); # Mark van Hoeij, Nov 08 2011
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/ (2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; a[n_] := Sum[ t[n, k], {k, 1, n}]; Array[a, 21] (* Jean-François Alcover, Feb 07 2016 after Herman Jamke in A046652 *)

Extensions

More terms from Emeric Deutsch, Mar 03 2004