cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.

This page as a plain text file.
%I A000309 M3601 N1460 #114 Feb 25 2025 05:46:36
%S A000309 1,1,4,24,176,1456,13056,124032,1230592,12629760,133186560,1436098560,
%T A000309 15774990336,176028860416,1990947110912,22783499599872,
%U A000309 263411369705472,3073132646563840,36143187370967040,428157758086840320,5105072641718353920,61228492804372561920
%N A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.
%C A000309 Also counts rooted planar non-separable triangulations with 3n edges. - _Valery A. Liskovets_, Dec 01 2003
%C A000309 Equivalently, rooted planar loopless triangulations with 2n triangles. - _Noam Zeilberger_, Oct 06 2016
%C A000309 Description trees of type (2,2) with n edges. (A description tree of type (a,b) is a rooted plane tree where every internal node is labeled by an integer between a and [b + sum of labels of its children], every leaf is labeled a, and the root is labeled [b + sum of labels of its children]. See Definition 1 and Section 5.2 of Cori and Schaeffer 2003.) - _Noam Zeilberger_, Oct 08 2017
%C A000309 The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - _N. J. A. Sloane_, Sep 17 2018
%D A000309 C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
%D A000309 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000309 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000309 T. D. Noe, <a href="/A000309/b000309.txt">Table of n, a(n) for n = 0..100</a>
%H A000309 Marie Albenque, Dominique Poulalhon, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p38">A Generic Method for Bijections between Blossoming Trees and Planar Maps</a>, Electron. J. Combin., 22 (2015), #P2.38.
%H A000309 Dario Benedetti, Sylvain Carrozza, Reiko Toriumi, Guillaume Valette, <a href="https://arxiv.org/abs/2003.02100">Multiple scaling limits of U(N)^2 X O(D) multi-matrix models</a>, arXiv:2003.02100 [math-ph], 2020.
%H A000309 Olivier Bernardi, <a href="https://hal.archives-ouvertes.fr/hal-00068433/document">Bijective counting of Kreweras walks and loopless triangulations</a>, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
%H A000309 Junliang Cai, Yanpei Liu, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00129-6">The enumeration of rooted nonseparable nearly cubic maps</a>, Discrete Math. 207 (1999), no. 1-3, 9--24. MR1710479 (2000g:05074). See (31).
%H A000309 Robert Cori and Gilles Schaeffer, <a href="https://doi.org/10.1016/S0304-3975(01)00221-3">Description trees and Tutte formulas</a>, Theoretical Computer Science 292:1 (2003), 165-183.
%H A000309 S. Dulucq and O. Guibert, <a href="http://dx.doi.org/10.1016/S0012-365X(96)83009-3">Stack words, standard tableaux and Baxter permutations</a>, Disc. Math. 157 (1996), 91-106.
%H A000309 C. F. Earl and L. J. March, <a href="/A005500/a005500_1.pdf">Architectural applications of graph theory</a>, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
%H A000309 Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.29">Asymptotic Expansions for Sub-Critical Lagrangean Forms</a>, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
%H A000309 R. C. Mullin, <a href="http://dx.doi.org/10.4153/CJM-1965-038-x">On counting rooted triangular maps</a>, Canad. J. Math., v.17 (1965), 373-382.
%H A000309 Elena Patyukova, Taylor Rottreau, Robert Evans, Paul D. Topham, Martin J. Greenall, <a href="https://www.doi.org/10.1021/acs.macromol.8b01118">Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment</a>, Macromolecules (2018) Vol. 51, No. 18, 7032-7043. Also <a href="https://arxiv.org/abs/1805.09878">arXiv:1805.09878</a> [math.CA], 2018.
%H A000309 W. T. Tutte, <a href="http://dx.doi.org/10.4153/CJM-1962-032-x">A census of Hamiltonian polygons</a>, Canad. J. Math., 14 (1962), 402-417.
%H A000309 W. T. Tutte, <a href="http://dx.doi.org/10.1137/0117044">On the enumeration of four-colored maps</a>, SIAM J. Appl. Math., 17 (1969), 454-460.
%H A000309 Noam Zeilberger, <a href="https://arxiv.org/abs/1804.10540">A theory of linear typings as flows on 3-valent graphs</a>, arXiv:1804.10540 [cs.LO], 2018.
%H A000309 Noam Zeilberger, <a href="https://arxiv.org/abs/1803.10080">A Sequent Calculus for a Semi-Associative Law</a>, arXiv:1803.10080 [math.LO], March 2018 (A revised version of a 2017 conference paper)
%H A000309 Noam Zeilberger, <a href="https://vimeo.com/289907363">A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video)</a>, <a href="https://vimeo.com/289910554">Part 2</a>, Rutgers Experimental Math Seminar, Sep 13 2018.
%H A000309 Jian Zhou, <a href="https://arxiv.org/abs/1810.03883">Fat and Thin Emergent Geometries of Hermitian One-Matrix Models</a>, arXiv:1810.03883 [math-ph], 2018.
%F A000309 a(n) = 2^(n-1) * A000139(n) for n > 0.
%F A000309 a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
%F A000309 a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
%F A000309 G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - _Mark van Hoeij_, Nov 02 2009
%F A000309 a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - _Ilya Gutkovskiy_, Oct 06 2016
%F A000309 D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - _R. J. Mathar_, Nov 02 2018
%F A000309 a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - _Peter Luschny_, Oct 28 2022
%F A000309 From _Karol A. Penson_, Feb 24 2025: (Start)
%F A000309 G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
%F A000309 G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
%F A000309 G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
%F A000309 a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
%F A000309 This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)
%p A000309 a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
%p A000309 A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # _Peter Luschny_, Oct 28 2022
%t A000309 f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* _Robert G. Wilson v_, Sep 21 2004 *)
%t A000309 Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* _Harvey P. Dale_, May 11 2011 *)
%o A000309 (PARI) a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ _Michel Marcus_, Aug 09 2014
%o A000309 (Magma) [2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // _Vincenzo Librandi_, Aug 10 2014
%o A000309 (Sage) [2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # _G. C. Greubel_ Nov 29 2018
%o A000309 (GAP) List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # _G. C. Greubel_, Nov 29 2018
%Y A000309 Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
%Y A000309 Cf. A000139, A000264, A000356, A002005, A006335, A358091.
%K A000309 nonn,nice
%O A000309 0,3
%A A000309 _N. J. A. Sloane_ and _Robert G. Wilson v_
%E A000309 Definition clarified by _Michael Albert_, Oct 24 2008