This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000313 M3633 N1477 #78 Jul 28 2024 16:39:39 %S A000313 0,0,0,1,4,30,220,1855,17304,177996,2002440,24474285,323060540, %T A000313 4581585866,69487385604,1122488536715,19242660629360,348933579412440, %U A000313 6673354706262864,134252194678935321,2834212998777523380,62651024183503148470,1447238658638922729580 %N A000313 Number of permutations of length n with 3 consecutive ascending pairs. %C A000313 Temporary remark: there may be some issues with respect to the offset of this sequence in the formula and program sections. - _Joerg Arndt_, Nov 16 2014 %D A000313 F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263. %D A000313 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000313 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000313 Todd Silvestri, <a href="/A000313/b000313.txt">Table of n, a(n) for n = 1..450</a> (first 100 terms from T. D. Noe) %F A000313 a(n) = (n*(n+1)!/6)*sum((-1)^k/k!, k=0..n). %F A000313 a(n) = A065087(n+2)/3. - _Zerinvary Lajos_, May 25 2007 %F A000313 E.g.f.: x^3/3!*exp(-x)/(1-x)^2. - _Vladeta Jovovic_, Jan 03 2003 %F A000313 a(n) = round( (exp(-1)*(n+1)!+(-1)^n)*n/6 ). - _Mark van Hoeij_, Oct 25 2011 %F A000313 G.f.: hypergeom([2, 4],[],x/(x+1))/(x+1)^4. - _Mark van Hoeij_, Nov 07 2011 %F A000313 a(1) = 0, a(n) = (n-2)*(n-1)*(!(n-2))/6 = (n-2)*(n-1)*A000166(n-2)/6, for n >= 2. - _Todd Silvestri_, Nov 15 2014 %F A000313 a(n) = hypergeom([4-n,2],[],1)*(-1)^n*A000292(n-3). - _Peter Luschny_, Nov 19 2014 %F A000313 D-finite with recurrence (-n+4)*a(n) +(n-1)*(n-4)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - _R. J. Mathar_, Aug 01 2022 %p A000313 series(hypergeom([2,4],[],x/(x+1))/(x+1)^4, x=0, 30); # _Mark van Hoeij_, Nov 07 2011 %p A000313 a := n -> simplify(hypergeom([4-n,2],[],1))*(-1)^n*(n-1)*(n-2)*(n-3)/6: seq(a(n), n=1..23); # _Peter Luschny_, Nov 19 2014 %t A000313 Table[(n*(n + 1)!/6)*Sum[(-1)^k/k!, {k, 0, n}], {n, -1, 25}] (* _T. D. Noe_, Jun 19 2012 *) %t A000313 a[1]:=0; a[n_Integer/;n>=2]:=(n-2) (n-1) Subfactorial[n-2]/6 (* _Todd Silvestri_, Nov 15 2014 *) %o A000313 (Sage) %o A000313 a = lambda n: (n-2)*(n-1)*sloane.A000166(n-2)/6 if n>2 else 0 %o A000313 [a(n) for n in range(1,24)] # _Peter Luschny_, Nov 19 2014 %Y A000313 Cf. A010027, A000255, A000166, A000274, A001260, A001261. %Y A000313 A diagonal in triangle A010027. %K A000313 nonn,easy %O A000313 1,5 %A A000313 _N. J. A. Sloane_ %E A000313 More terms from _Vladeta Jovovic_, Jan 03 2003 %E A000313 Formula added by _Sean A. Irvine_, Nov 11 2010 %E A000313 Name clarified and offset changed by _N. J. A. Sloane_, Apr 12 2014