This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000334 M3858 N1580 #52 Jan 25 2019 09:29:05 %S A000334 1,5,15,45,120,326,835,2145,5345,13220,32068,76965,181975,425490, %T A000334 982615,2245444,5077090,11371250,25235790,55536870,121250185, %U A000334 262769080,565502405,1209096875,2569270050,5427963902,11404408525,23836421895,49573316740,102610460240 %N A000334 Number of 4-dimensional partitions of n. %D A000334 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000334 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000334 Suresh Govindarajan, <a href="/A000334/b000334.txt">Table of n, a(n) for n = 1..40</a> %H A000334 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="/A000219/a000219.pdf">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], <a href="http://dx.doi.org/10.1017/S0305004100042171">DOI</a> %H A000334 S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, <a href="http://arxiv.org/abs/1105.6231">On the asymptotics of higher-dimensional partitions</a>, arXiv:1105.6231 [cond-mat.stat-mech], 2011. %H A000334 S. P. Naveen, <a href="http://www.physics.iitm.ac.in/~suresh/theses/NaveenThesis.pdf">On The Asymptotics of Some Counting Problems in Physics</a>, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011. %e A000334 From _Gus Wiseman_, Jan 23 2019: (Start) %e A000334 The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions: %e A000334 (((1))) (((2))) (((3))) %e A000334 (((11))) (((21))) %e A000334 (((1)(1))) (((111))) %e A000334 (((1))((1))) (((2)(1))) %e A000334 (((1)))(((1))) (((11)(1))) %e A000334 (((2))((1))) %e A000334 (((1)(1)(1))) %e A000334 (((11))((1))) %e A000334 (((2)))(((1))) %e A000334 (((1)(1))((1))) %e A000334 (((11)))(((1))) %e A000334 (((1))((1))((1))) %e A000334 (((1)(1)))(((1))) %e A000334 (((1))((1)))(((1))) %e A000334 (((1)))(((1)))(((1))) %e A000334 (End) %t A000334 trans[x_]:=If[x=={},{},Transpose[x]]; %t A000334 levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]]; %t A000334 Table[Length[levptns[n,4]],{n,8}] (* _Gus Wiseman_, Jan 24 2019 *) %Y A000334 Cf. A000219 (2-dim), A000293 (3-dim), A000390 (5-dim), A096751 (k-dim). %Y A000334 Cf. A002974, A007714, A050340. %K A000334 nonn,nice %O A000334 1,2 %A A000334 _N. J. A. Sloane_ %E A000334 More terms from _Sean A. Irvine_, Nov 14 2010