A000339 Number of partitions into non-integral powers.
1, 5, 18, 45, 100, 185, 323, 522, 804, 1180, 1687, 2322, 3139, 4146, 5377, 6859, 8645, 10733, 13203, 16058, 19356, 23132, 27460, 32330, 37846, 44031, 50954, 58637, 67203, 76613, 87021, 98443, 110951, 124616, 139526, 155681, 173246, 192243
Offset: 2
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Delbert L. Johnson, Table of n, a(n) for n = 2..7032
- B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
- B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
Programs
-
Maple
A000339 := proc(n) local a,x1,x2 ; a := 0 ; for x1 from 1 to n^2 do x2 := (n-x1^(1/2))^2 ; if floor(x2) >= x1 then a := a+floor(x2-x1+1) ; fi; od: a ; end: for n from 2 to 80 do printf("%d,\n",A000339(n)) ; od: # R. J. Mathar, Sep 29 2009
-
Mathematica
A000339[n_] := Module[{a, x1, x2}, a = 0; For[x1 = 1 , x1 <= n^2 , x1++, x2 = (n-x1^(1/2))^2; If[Floor[x2] >= x1, a = a+Floor[x2-x1+1]]]; a]; Reap[ For[n = 2, n <= 80, n++, Print[an = A000339[n]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016, after R. J. Mathar *)
Extensions
More terms from R. J. Mathar, Sep 29 2009
Comments