cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000339 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 5, 18, 45, 100, 185, 323, 522, 804, 1180, 1687, 2322, 3139, 4146, 5377, 6859, 8645, 10733, 13203, 16058, 19356, 23132, 27460, 32330, 37846, 44031, 50954, 58637, 67203, 76613, 87021, 98443, 110951, 124616, 139526, 155681, 173246, 192243
Offset: 2

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)<=n for any two integers 1<=x_1<=x_2. - R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A000339 := proc(n) local a,x1,x2 ; a := 0 ; for x1 from 1 to n^2 do x2 := (n-x1^(1/2))^2 ; if floor(x2) >= x1 then a := a+floor(x2-x1+1) ; fi; od: a ; end: for n from 2 to 80 do printf("%d,\n",A000339(n)) ; od: # R. J. Mathar, Sep 29 2009
  • Mathematica
    A000339[n_] := Module[{a, x1, x2}, a = 0; For[x1 = 1 , x1 <= n^2 , x1++, x2 = (n-x1^(1/2))^2; If[Floor[x2] >= x1, a = a+Floor[x2-x1+1]]]; a]; Reap[ For[n = 2, n <= 80, n++, Print[an = A000339[n]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Sep 29 2009