This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000350 M3935 N1619 #68 Jan 05 2025 19:51:31 %S A000350 0,1,5,25,29,41,49,61,65,85,89,101,125,145,149,245,265,365,385,485, %T A000350 505,601,605,625,649,701,725,745,749,845,865,965,985,1105,1205,1249, %U A000350 1345,1445,1585,1685,1825,1925,2065,2165,2305,2405,2501,2545,2645,2785,2885 %N A000350 Numbers m such that Fibonacci(m) ends with m. %C A000350 Conjecture: Other than 1 and 5, there is no m such that Fibonacci(m) in binary ends with m in binary. The conjecture holds up to m=50000. - _Ralf Stephan_, Aug 21 2006 %C A000350 The conjecture for binary numbers holds for m < 2^25. - _T. D. Noe_, May 14 2007 %C A000350 Conjecture is true. It is easy to prove (by induction on k) that if Fibonacci(m) ends with m in binary, then m == 0, 1, or 5 (mod 3*2^k) for any positive integer k, i.e., m must simply be equal to 0, 1, or 5. - _Max Alekseyev_, Jul 03 2009 %D A000350 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000350 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000350 Alois P. Heinz, <a href="/A000350/b000350.txt">Table of n, a(n) for n = 1..1034</a> (terms n = 1..803 from T. D. Noe) %H A000350 G. R. Deily, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/4-2/deily.pdf">Terminal Digit Coincidences Between Fibonacci Numbers and Their Indices</a>, The Fibonacci Quarterly, 4.2 (1966) 151. %H A000350 M. Dunton and R. E. Grimm, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/4-4/dunton.pdf">Fibonacci on Egyptian fractions</a>, Fib. Quart., 4 (1966), 339-354. %H A000350 D. A. Lind, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/5-2/lind.pdf">Extended Computations of Terminal Digit Coincidences</a>, Fibonacci Quarterly, 5.2 April 1967 pp. 183-184. %e A000350 Fibonacci(25) = 75025 ends with 25. %t A000350 a=0;b=1;c=1;lst={}; Do[a=b;b=c;c=a+b;m=Floor[N[Log[10,n]]]+1; If[Mod[c,10^m]==n,AppendTo[lst,n]],{n,3,5000}]; Join[{0,1},lst] (* edited and changed by _Harvey P. Dale_, Sep 10 2011 *) %t A000350 fnQ[n_]:=Mod[Fibonacci[n],10^IntegerLength[n]]==n; Select[Range[ 0,2900],fnQ] (* _Harvey P. Dale_, Nov 03 2012 *) %o A000350 (Haskell) %o A000350 import Data.List (isSuffixOf, elemIndices) %o A000350 import Data.Function (on) %o A000350 a000350 n = a000350_list !! (n-1) %o A000350 a000350_list = elemIndices True $ %o A000350 zipWith (isSuffixOf `on` show) [0..] a000045_list %o A000350 -- _Reinhard Zumkeller_, Apr 10 2012 %o A000350 (PARI) for(n=0,1e4,if(((Mod([1,1;1,0],10^#Str(n)))^n)[1,2]==n,print1(n", "))) \\ _Charles R Greathouse IV_, Apr 10 2012 %o A000350 (Python) %o A000350 from sympy import fibonacci %o A000350 [i for i in range(1000) if str(fibonacci(i))[-len(str(i)):]==str(i)] # _Nicholas Stefan Georgescu_, Feb 27 2023 %Y A000350 Cf. A000045, A050816, A038546, A052000, A023172. %K A000350 nonn,base,easy,nice %O A000350 1,3 %A A000350 _N. J. A. Sloane_