This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000362 M4016 N1664 #36 Oct 05 2024 16:29:46 %S A000362 5,57,352,1280,3522,7970,15872,29184,49410,79042,122400,180224,257314, %T A000362 362340,492032,655360,867588,1117314,1420320,1803264,2237380,2745154, %U A000362 3380736,4080640,4881250,5874150,6928416,8126464,9600870,11133604 %N A000362 Generalized class numbers c_(n,2). %C A000362 Let L_a(s) = Sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (Pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3,... %D A000362 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000362 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000362 Matthew House, <a href="/A000362/b000362.txt">Table of n, a(n) for n = 1..10000</a> %H A000362 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1967-0223295-5">Generalized Euler and class numbers</a>. Math. Comp. 21 (1967) 689-694. %H A000362 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1968-0227093-9">Corrigenda to: "Generalized Euler and class numbers"</a>, Math. Comp. 22 (1968), 699 %H A000362 D. Shanks, <a href="/A000003/a000003.pdf">Generalized Euler and class numbers</a>, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy] %t A000362 amax = 30; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2 / Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a / Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[km/2, km = 2km]]; A000362[a_] := cc[km][[a, 3]]; Table[A000362[a], {a, 1, amax} ] (* _Jean-François Alcover_, Feb 08 2016 *) %t A000362 Table[rowA235605[n, 2][[3]], {n, 50}] (* see A235605 *) (* _Matthew House_, Oct 05 2024 *) %Y A000362 Cf. A000233, A000508. %K A000362 nonn,easy %O A000362 1,1 %A A000362 _N. J. A. Sloane_ %E A000362 More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000