This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000430 #68 Aug 09 2024 15:14:23 %S A000430 2,3,4,5,7,9,11,13,17,19,23,25,29,31,37,41,43,47,49,53,59,61,67,71,73, %T A000430 79,83,89,97,101,103,107,109,113,121,127,131,137,139,149,151,157,163, %U A000430 167,169,173,179,181,191,193,197,199,211,223 %N A000430 Primes and squares of primes. %C A000430 Also numbers n such that the product of proper divisors is < n. %C A000430 See A050216 for lengths of blocks of consecutive primes. - _Reinhard Zumkeller_, Sep 23 2011 %C A000430 Numbers q > 1 such that d(q) < 4. Numbers k such that the number of ways of writing k = m + t is equal to the number of ways of writing k = r*s, where m|t and r|s. - _Juri-Stepan Gerasimov_, Oct 14 2017 %C A000430 Called multiplicatively deficient numbers by Chau (2004). - _Amiram Eldar_, Jun 29 2022 %D A000430 F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House 2000 %D A000430 F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006. %H A000430 T. D. Noe, <a href="/A000430/b000430.txt">Table of n, a(n) for n = 1..1000</a> %H A000430 William Chau, <a href="https://www.jstor.org/stable/24340619">The tau, sigma, rho functions, and some related numbers</a>, Pi Mu Epsilon Journal, Vol. 11, No. 10 (Spring 2004), pp. 519-534; <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.11.No10.pdf">entire issue</a>. %H A000430 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/Sequences-book.pdf">Sequences of Numbers Involved in Unsolved Problems</a>. %F A000430 A084114(a(n)) = 0, see also A084110. - _Reinhard Zumkeller_, May 12 2003 %F A000430 A109810(a(n)) = 2. - _Reinhard Zumkeller_, May 24 2010 %F A000430 A010051(a(n)) + A010055(a(n))*A064911(a(n)) = 1; %F A000430 A056595(a(n)) = 1. - _Reinhard Zumkeller_, Aug 15 2011 %F A000430 A032741(a(n)) = A046951(a(n)); A293575(a(n)) = 0. - _Juri-Stepan Gerasimov_, Oct 14 2017 %F A000430 The number of terms not exceeding x is N(x) ~ (x + 2*sqrt(x))/log(x) (Chau, 2004). - _Amiram Eldar_, Jun 29 2022 %t A000430 nn = 223; t = Union[Prime[Range[PrimePi[nn]]], Prime[Range[PrimePi[Sqrt[nn]]]]^2] (* _T. D. Noe_, Apr 11 2011 *) %t A000430 Module[{upto=250,prs},prs=Prime[Range[PrimePi[upto]]];Select[Join[ prs,prs^2], #<=upto&]]//Sort (* _Harvey P. Dale_, Oct 08 2016 *) %o A000430 (Haskell) %o A000430 a000430 n = a000430_list !! (n-1) %o A000430 a000430_list = m a000040_list a001248_list where %o A000430 m (x:xs) (y:ys) | x < y = x : m xs (y:ys) %o A000430 | x > y = y : m (x:xs) ys %o A000430 -- _Reinhard Zumkeller_, Sep 23 2011 %o A000430 (PARI) is(n)=isprime(n) || (issquare(n,&n) && isprime(n)) \\ _Charles R Greathouse IV_, Sep 04 2013 %o A000430 (Python) %o A000430 from math import isqrt %o A000430 from sympy import primepi %o A000430 def A000430(n): %o A000430 def f(x): return n+x-primepi(x)-primepi(isqrt(x)) %o A000430 m, k = n, f(n) %o A000430 while m != k: %o A000430 m, k = k, f(k) %o A000430 return int(m) # _Chai Wah Wu_, Aug 09 2024 %Y A000430 Union of A000040 and A001248. %Y A000430 Cf. A007422, A010051, A010055, A032741, A046951, A050216, A056595, A058080, A064911, A084110, A084114, A293575. %K A000430 nonn,easy,nice %O A000430 1,1 %A A000430 R. Muller