This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000433 #33 Apr 06 2020 19:25:16 %S A000433 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30, %T A000433 31,32,100,101,102,103,104,105,106,107,110,111,112,113,114,115,116, %U A000433 117,120,121,122,123,124,125,126,127,130,131,132,200,201,202,203 %N A000433 n written in base where place values are positive cubes. %C A000433 Let [d1, d2, d3, ...] be the decimal expansion of the n-th term, then dk is the number of times that the greedy algorithm subtracts the cube k^3 with input n. - _Joerg Arndt_, Nov 21 2014 %C A000433 For n > 1: A048766(n) = number of digits of a(n); A190311(n) = number of nonzero digits of a(n); A055401(n) = sum of digits of a(n). - _Reinhard Zumkeller_, May 08 2011 %C A000433 First differs from numbers written in base 8 (A007094) at a(27) = 100, whereas A007094(27) = 33. - _Alonso del Arte_, Nov 27 2014 %C A000433 The rightmost (least significant) digit never exceeds 7, the second digit from the right never exceeds 3, the third digit never exceeds 2, and the rest are just 0's and 1's. - _Ivan Neretin_, Sep 03 2015 %D A000433 Florentin Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ. %H A000433 Reinhard Zumkeller, <a href="/A000433/b000433.txt">Table of n, a(n) for n = 0..10000</a> %e A000433 a(26) = 32 because 26 = 3 * 2^3 + 2 * 1^3. %e A000433 a(27) = 100 because 27 = 3^3 + 0 * 2^3 + 0 * 1^3. %e A000433 a(28) = 101 because 28 = 3^3 + 0 * 2^3 + 1 * 1^3. %o A000433 (Haskell) %o A000433 import Data.Char (intToDigit) %o A000433 a000433 0 = 0 %o A000433 a000433 n = read $ map intToDigit $ %o A000433 t n $ reverse $ takeWhile (<= n) $ tail a000578_list where %o A000433 t _ [] = [] %o A000433 t m (x:xs) %o A000433 | x > m = 0 : t m xs %o A000433 | otherwise = (fromInteger m') : t r xs where (m',r) = divMod m x %o A000433 -- _Reinhard Zumkeller_, May 08 2011 %Y A000433 Cf. A000578, A007961. %K A000433 nonn,base,easy,look %O A000433 0,3 %A A000433 R. Muller