This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000460 M4795 N2047 #122 Feb 16 2025 08:32:21 %S A000460 1,11,66,302,1191,4293,14608,47840,152637,478271,1479726,4537314, %T A000460 13824739,41932745,126781020,382439924,1151775897,3464764515, %U A000460 10414216090,31284590870,93941852511,282010106381,846416194536,2540053889352,7621839388981,22869007827143 %N A000460 Eulerian numbers (Euler's triangle: column k=3 of A008292, column k=2 of A173018). %C A000460 There are 2 versions of Euler's triangle: %C A000460 * A008292 Classic version of Euler's triangle used by Comtet (1974). %C A000460 * A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990). %C A000460 Euler's triangle rows and columns indexing conventions: %C A000460 * A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.) %C A000460 * A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.) %C A000460 Number of permutations of [n] with exactly 2 descents. - _Mike Zabrocki_, Nov 10 2004 %D A000460 L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974. %D A000460 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243. %D A000460 F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151. %D A000460 F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260. %D A000460 J. B. Remmel et al., The combinatorial properties of the Benoumhani polynomials for the Whitney numbers of Dowling lattices, Discrete Math., 342 (2019), 2966-2983. See page 2981. %D A000460 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215. %D A000460 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000460 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000460 Vincenzo Librandi, <a href="/A000460/b000460.txt">Table of n, a(n) for n = 3..1000</a> %H A000460 E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce <a href="http://arxiv.org/abs/1508.03673">A generalization of Eulerian numbers via rook placements</a>, arXiv:1508.03673 [math.CO], 2015. %H A000460 L. Carlitz et al., <a href="http://dx.doi.org/10.1016/S0021-9800(66)80057-1">Permutations and sequences with repetitions by number of increases</a>, J. Combin. Theory, 1 (1966), 350-374. %H A000460 E. T. Frankel, <a href="/A000217/a000217_1.pdf">A calculus of figurate numbers and finite differences</a>, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy] %H A000460 Wayne A. Johnson, <a href="https://arxiv.org/abs/2303.16991">An Euler operator approach to Ehrhart series</a>, arXiv:2303.16991 [math.CO], 2023. %H A000460 J. C. P. Miller, <a href="/A002439/a002439_1.pdf">Letter to N. J. A. Sloane, Mar 26 1971</a> %H A000460 O. J. Munch, <a href="/A000460/a000460.pdf">Om potensproduktsummer</a> [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy] %H A000460 O. J. Munch, <a href="http://www.jstor.org/stable/24524919">Om potensproduktsummer</a> [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. %H A000460 Nagatomo Nakamura, <a href="http://libir.josai.ac.jp/il/user_contents/02/G0000284repository/pdf/JOS-13447777-0808.pdf">Pseudo-Normal Random Number Generation via the Eulerian Numbers</a>, Josai Mathematical Monographs, vol 8, pp. 85-95, 2015. %H A000460 P. A. Piza, <a href="http://www.jstor.org/stable/3029339">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260. %H A000460 P. A. Piza, <a href="/A001117/a001117.pdf">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy] %H A000460 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A000460 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992. %H A000460 J. Riordan, <a href="/A000217/a000217_2.pdf">Review of Frankel (1950)</a> [Annotated scanned copy] %H A000460 Sittipong Thamrongpairoj, <a href="https://escholarship.org/uc/item/7j561211">Dowling Set Partitions, and Positional Marked Patterns</a>, Ph. D. Dissertation, University of California-San Diego (2019). %H A000460 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a> %H A000460 Robert G. Wilson v, <a href="/A007347/a007347.pdf">Letter to N. J. A. Sloane, Apr. 1994</a> %H A000460 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-40,82,-91,52,-12). %F A000460 a(n) = 3^n - (n+1)*2^n + (1/2)*n*(n+1). - _Randall L Rathbun_, Jan 22 2002 %F A000460 G.f.: x^3*(1+x-4*x^2)/((1-x)^3*(1-2*x)^2*(1-3*x)). - _Mike Zabrocki_, Nov 10 2004 %F A000460 E.g.f.: exp(x)*(exp(2*x) - (1 + 2*x)*exp(x) + x + x^2/2). - _Wolfdieter Lang_, Apr 17 2017 %p A000460 A000460:=-z*(-1-z+4*z**2)/(-1+3*z)/(2*z-1)**2/(z-1)**3; # _Simon Plouffe_ in his 1992 dissertation %t A000460 k = 3; Table[k^(n+k-1) + Sum[(-1)^i/i!*(k-i)^(n+k-1) * Product[n+k+1-j, {j, 1, i}], {i, k-1}], {n, 23}] (* or *) %t A000460 Array[3^(# + 2) - (# + 3)*2^(# + 2) + (1/2)*(# + 2)*(# + 3) &, 23] (* _Michael De Vlieger_, Aug 04 2015, after PARI *) %o A000460 (PARI) A000460(n) = 3^(n+2)-(n+3)*2^(n+2)+(1/2)*(n+2)*(n+3) %o A000460 (Magma) [3^n-(n+1)*2^n+(1/2)*n*(n+1): n in [3..30]]; // _Vincenzo Librandi_, Apr 18 2017 %o A000460 (Magma) [EulerianNumber(n, 2): n in [3..40]]; // _G. C. Greubel_, Oct 02 2024 %o A000460 (SageMath) %o A000460 def A000460(n): return 3^n - (n+1)*2^n + binomial(n+1,2) %o A000460 [A000460(n) for n in range(3,31)] # _G. C. Greubel_, Oct 02 2024 %Y A000460 Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)). %Y A000460 Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)). %Y A000460 Cf. A000295. %K A000460 nonn,easy %O A000460 3,2 %A A000460 _N. J. A. Sloane_, _Mira Bernstein_, _Robert G. Wilson v_ %E A000460 More terms from _Christian G. Bower_, May 12 2000 %E A000460 More terms from _Mike Zabrocki_, Nov 10 2004