A000388
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-2 places.
Original entry on oeis.org
6, 20, 180, 1106, 9292, 82980, 831545, 9139482, 109595496, 1423490744, 19911182207, 298408841160, 4770598226296, 81037124739588, 1457607971046492, 27675791180024802, 553166885187641670, 11609691036091870428, 255273744004170486155, 5868308906885934514178
Offset: 4
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(f(n,2), n=5..30); # code for f(n,k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
-
sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1 + t) u^3 + 3 t^4 (u^4)) (1 - t* u)^(-1) (1 - (1 + 2 t) u - t *u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; su[n_] := su[n] = Sum[ Coefficient[ds[t, n]/n!, t, j]*(n - j)!*(y - 1)^j, {j, 0, n}]; f[n_, k_] := Coefficient[su[n], y, k]; Table[f[n, 2], {n, 4, 23}] (* Jean-François Alcover, Sep 01 2011, after Maple prog. *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
A000380
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-3 places.
Original entry on oeis.org
6, 8, 40, 176, 1421, 10352, 93114, 912920, 9929997, 117970704, 1521176826, 21150414880, 315400444070, 5020920314016, 84979755347122, 1523710321272384, 28851091193764023, 575253584489378040, 12047084261153160394, 264377395040950523112, 6066972656940255290199
Offset: 3
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(f(n,3), n=3..30); # code for f(n,k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
-
sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1 + t) u^3 + 3 t^4 (u^4)) (1 - t* u)^(-1) (1 - (1 + 2 t) u - t *u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; su[n_] := su[n] = Sum[ Coefficient[ds[t, n]/n!, t, j]*(n - j)!*(y - 1)^j, {j, 0, n}]; f[n_, k_] := Coefficient[su[n], y, k]; Table[f[n, 3], {n, 3, 23}] (* Jean-François Alcover, Sep 01 2011, after Maple prog. *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
A000440
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-4 places.
Original entry on oeis.org
9, 30, 180, 980, 8326, 70272, 695690, 7518720, 89193276, 1148241458, 15947668065, 237613988040, 3780133322620, 63945806121448, 1146081593303784, 21693271558730304, 432411684714253605, 9053476937543082240, 198641103956454088919
Offset: 4
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Snkgf := (t, u) - >(1 - t*u)^( - 1)*(1 - (1 + 2*t)*u - t*u^2 + t^3*u^3)^( - 1); sigmankgf := (t, u) - >(1 - 2*t^2*u^2 - 2*t^2*(1 + t)*u^3 + 3*t^4*u^4)*Snkgf(t, u); f := (n, k) - >coeff(sum(coeff(subs(u=0, diff(sigmankgf(t, u), u$n))/n!, t, j)*(n - j)!*(y - 1)^j, j =0..n), y, k); seq(f(i, 4), i=4..30); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
-
sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1+t) u^3 + 3 t^4 (u^4)) (1 - t*u)^(-1) (1 - (1+2t) u - t*u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; f[n_, k_] := Coefficient[Sum[Coefficient[ds[t, n]/n!, t, j]*(n-j)!*(y-1)^j, {j, 0, n}], y, k]; Table[f[i, 4], {i, 4, 22}] (* Jean-François Alcover, May 27 2011, after Maple prog. *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
A000476
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-1 places.
Original entry on oeis.org
15, 72, 609, 4960, 46188, 471660, 5275941, 64146768, 842803767, 11902900380, 179857257960, 2895705788736, 49491631601635, 895010868095256, 17074867330880805, 342733960299356800, 7220616209235766260, 159312370008282356844, 3673720238903201471593
Offset: 5
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(f(n,1), n=5..30); # where code for f(n,k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu) Feb 17 2001
-
sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1 + t) u^3 + 3 t^4 (u^4)) (1 - t* u)^(-1) (1 - (1 + 2 t) u - t *u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; su[n_] := su[n] = Sum[ Coefficient[ds[t, n]/n!, t, j]*(n - j)!*(y - 1)^j, {j, 0, n}]; f[n_, k_] := Coefficient[su[n], y, k]; Table[f[n, 1], {n, 5, 23}] (* Jean-François Alcover, Sep 01 2011, after Maple prog. *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
A000492
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-6 places.
Original entry on oeis.org
20, 154, 1676, 14292, 155690, 1731708, 21264624, 280260864, 3970116255, 60113625680, 969368687752, 16588175089420, 300272980075896, 5733025551810600, 115148956467702600, 2427199940533198992, 53576182138937428377, 1235917889588345408586
Offset: 6
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(f(n,6), n=6..30); # code for f(n,k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
-
sigma[t_, u_] = (1-2t^2 (u^2) - 2t^2 (1+t) u^3 + 3t^4 (u^4)) (1-t*u)^(-1) (1-(1+2t)u - t*u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; f[n_, k_] := Coefficient[Sum[ Coefficient[ ds[t, n]/n!, t, j]*(n-j)!*(y-1)^j, {j, 0, n}], y, k]; a[n_] := f[n, 6]; Table[a[n], {n, 6, 25}] (* Jean-François Alcover, Feb 09 2016 *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
A000500
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-7 places.
Original entry on oeis.org
31, 304, 4230, 43880, 547338, 6924960, 94714620, 1375878816, 21273204330, 348919244768, 6056244249682, 110955673493568, 2140465858763844, 43379533256972640, 921616584567907176, 20485188316420940640, 475499882089797554181, 11506280235885243825696
Offset: 7
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(f(n,7), n=7..30); # code for f(n,k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
-
sigma[t_, u_] := (1-2*t^2*u^2 - 2*t^2*(1+t)*u^3 + 3*t^4*u^4)/((1-t*u)*(1-(1 + 2*t)*u - t*u^2 + t^3*u^3)); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; f[n_, k_] := Coefficient[ Sum[ Coefficient[ds[t, n]/n!, t, j]*(n-j)!*(y-1)^j, {j, 0, n}], y, k]; a[n_] := f[n, 7]; Table[Print[an = a[n]]; an, {n, 7, 24}] (* Jean-François Alcover, Jan 25 2013, after Maple code *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
Showing 1-6 of 6 results.