This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000474 #38 Jun 28 2023 16:01:51 %S A000474 1,1,1,6,396,526915620,1132835421602062347 %N A000474 Number of nonisomorphic 1-factorizations of complete graph K_{2n}. %C A000474 Number of essentially different ways of scheduling a tournament of 2n teams. %D A000474 CRC Handbook of Combinatorial Designs (see pages 655, 720-723). %D A000474 Jeffrey H. Dinitz, David K. Garnick, Brendan D. McKay, There are 526,915,620 nonisomorphic one-factorizations of K_{12}. J. Combin. Des. 2 (1994), no. 4, 273-285. %D A000474 Petteri Kaski and Patric R. J. Östergård, There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K_{14}, Journal of Combinatorial Designs 17 (2009), pp. 147-159. %D A000474 Charles C. Lindner, Eric Mendelsohn, and Alexander Rosa. "On the number of 1-factorizations of the complete graph." Journal of Combinatorial Theory, Series B 20.3 (1976): 265-282. %D A000474 E. Seah and D. R. Stinson, On the enumeration of one-factorizations of complete graphs containing prescribed automorphism groups. Math. Comp. 50 (1988), 607-618. %D A000474 W. D. Wallis, 1-Factorizations of complete graphs, pp. 593-631 in Jeffrey H. Dinitz and D. R. Stinson, Contemporary Design Theory, Wiley, 1992. %H A000474 Petteri Kaski and Patric R. J. Östergård, <a href="http://arxiv.org/abs/0801.0202">There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K_{14}</a>, arXiv:0801.0202 [math.CO], 2007. %H A000474 Joseph Malkevitch, <a href="http://www1.ams.org/samplings/feature-column/fcarc-sports">Mathematics and Sports</a> %H A000474 Brendan D. McKay and Ian M. Wanless, <a href="https://arxiv.org/abs/2104.07902">Enumeration of Latin squares with conjugate symmetry</a>, arXiv:2104.07902 [math.CO], 2021. Table 5 p. 15. %H A000474 D. V. Zinoviev, <a href="https://www.mathnet.ru/eng/ppi2154">On the number of 1-factorizations of a complete graph</a> [in Russian], Problemy Peredachi Informatsii, 50 (No. 4), 2014, 71-78. %H A000474 <a href="/index/To#tournament">Index entries for sequences related to tournaments</a> %F A000474 a(n) ~ exp(2n^2 log(2n)) as n -> infinity (see CRC Handbook, p. 655, Theorem 4.20). %Y A000474 For odd n this sequence equals A350017. Cf. A000438. %K A000474 nonn,hard,more,nice %O A000474 1,4 %A A000474 _N. J. A. Sloane_ %E A000474 a(7) communicated by Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), Aug 02 2008 %E A000474 Comment, link, and update by _Charles R Greathouse IV_, May 11 2010