This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000511 #15 Sep 01 2015 06:32:54 %S A000511 1,1,2,3,5,8,11,17,25,33,47,67,87,117,160,207,270,356,455,584,751,945, %T A000511 1195,1513,1882,2345,2927,3608,4446,5483,6701,8180,9986,12109,14664, %U A000511 17750,21371,25694,30872,36937,44127,52672,62658,74429,88327,104524,123518,145819,171737,201990,237332,278289,325901,381278,445272,519381,605230,704170,818357,950150,1101634,1275907,1476384,1706226,1969869,2272224,2618007,3013559,3465917,3982025,4570898,5242569,6007170,6877474,7867709,8992510,10269905,11719991,13363733,15226469,17336450,19723485,22423058,25474712,28920541,32810028,37198284,42144403,47717124,53992936,61054313,68996364,77924848,87954283,99215750,111854888 %N A000511 Number of n-step spiral self-avoiding walks on hexagonal lattice, where at each step one may continue in same direction or make turn of 2*Pi/3 counterclockwise. %C A000511 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. %H A000511 J. H. Bruinier, <a href="http://arXiv.org/abs/math.NT/0404427">Infinite products in number theory and geometry</a>, arXiv:math/0404427 [math.NT], 2004. %H A000511 G. S. Joyce and R. Bak, <a href="http://dx.doi.org/10.1088/0305-4470/18/6/006">An exact solution for a spiral self-avoiding walk model on the triangular lattice</a>, J. Phys. A: Math. Gen. 18 (1985) L293-L298, esp. p. L297. %H A000511 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a> %K A000511 nonn,walk %O A000511 0,3 %A A000511 Stephen Penrice (penrice(AT)dimacs.rutgers.edu) %E A000511 More terms from _Sean A. Irvine_, Nov 14 2010