This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000528 #30 Mar 12 2022 21:40:50 %S A000528 1,1,1,2,2,17,324,842227,57810418543,104452188344901572, %T A000528 6108088657705958932053657 %N A000528 Number of types of Latin squares of order n. Equivalently, number of nonisomorphic 1-factorizations of K_{n,n}. %C A000528 Here "type" means an equivalence class of Latin squares under the operations of row permutation, column permutation, symbol permutation and transpose. In the 1-factorizations formulation, these operations are labeling of left side, labeling of right side, permuting the order in which the factors are listed and swapping the left and right sides, respectively. - _Brendan McKay_ %C A000528 There are 6108088657705958932053657 isomorphism classes of one-factorizations of K_{11,11}. - Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009 %D A000528 CRC Handbook of Combinatorial Designs, 1996, p. 660. %D A000528 Denes and Keedwell, Latin Squares and Applications, Academic Press 1974. %H A000528 A. Hulpke, Petteri Kaski and Patric R. J. Östergård, <a href="http://dx.doi.org/10.1090/S0025-5718-2010-02420-2">The number of Latin squares of order 11</a>, Math. Comp. 80 (2011) 1197-1219 %H A000528 B. D. McKay, A. Meynert and W. Myrvold, <a href="http://users.cecs.anu.edu.au/~bdm/papers/ls_final.pdf">Small Latin Squares, Quasigroups and Loops</a>, J. Combin. Designs, to appear (2005). %H A000528 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a> %Y A000528 See A040082 for another version. %Y A000528 Cf. A002860, A003090, A000315, A040082, A000479. %K A000528 hard,nonn,nice,more %O A000528 1,4 %A A000528 _N. J. A. Sloane_ %E A000528 More terms from _Richard Bean_, Feb 17 2004 %E A000528 a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009