This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000538 M5043 N2179 #162 Aug 21 2025 18:52:43 %S A000538 0,1,17,98,354,979,2275,4676,8772,15333,25333,39974,60710,89271, %T A000538 127687,178312,243848,327369,432345,562666,722666,917147,1151403, %U A000538 1431244,1763020,2153645,2610621,3142062,3756718,4463999,5273999,6197520,7246096,8432017,9768353 %N A000538 Sum of fourth powers: 0^4 + 1^4 + ... + n^4. %C A000538 This sequence is related to A000537 by the transform a(n) = n*A000537(n) - Sum_{i=0..n-1} A000537(i). - _Bruno Berselli_, Apr 26 2010 %C A000538 A formula for the r-th successive summation of k^4, for k = 1 to n, is ((12*n^2+(12*n-5)*r+r^2)*(2*n+r)*(n+r)!)/((r+4)!*(n-1)!), (H. W. Gould). - _Gary Detlefs_, Jan 02 2014 %C A000538 The number of four dimensional hypercubes in a 4D grid with side lengths n. This applies in general to k dimensions. That is, the number of k-dimensional hypercubes in a k-dimensional grid with side lengths n is equal to the sum of 1^k + 2^k + ... + n^k. - _Alejandro Rodriguez_, Oct 20 2020 %D A000538 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813. %D A000538 A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222. %D A000538 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155. %D A000538 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275. %D A000538 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000538 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000538 T. D. Noe, <a href="/A000538/b000538.txt">Table of n, a(n) for n = 0..1000</a> %H A000538 M. Abramowitz and I. A. Stegun, eds., <a href="https://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A000538 J. L. Bailey, Jr., <a href="https://dx.doi.org/10.1214/aoms/1177732978">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359. %H A000538 J. L. Bailey, <a href="/A002309/a002309.pdf">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy] %H A000538 Bruno Berselli, A description of the transform in Comments lines: website <a href="https://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian). %H A000538 Stefano Capparelli, <a href="https://books.google.com/books?hl=en&lr=&id=y87LDwAAQBAJ&oi=fnd&pg=PP1&ots=vO1h7m80TC&sig=RJbxo4ndnuh96HVN6wTgeA1gQPE#v=onepage&q=oeis&f=false">Notes on Discrete Math</a>, Società Editrice Esculapio SRL (2019) 3-4. %H A000538 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 13. %H A000538 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A000538 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A000538 Eric Weisstein, <a href="https://mathworld.wolfram.com/FaulhabersFormula.html">MathWorld: Faulhaber's Formula</a> %H A000538 Wikipedia, <a href="http://en.wikipedia.org/wiki/Faulhaber's_formula">Faulhaber's formula</a> %H A000538 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A000538 a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30. %F A000538 The preceding formula is due to al-Kachi (1394-1437). - _Juri-Stepan Gerasimov_, Jul 12 2009 %F A000538 G.f.: x*(x+1)*(1+10*x+x^2)/(1-x)^6. _Simon Plouffe_ in his 1992 dissertation. More generally, the o.g.f. for Sum_{k=0..n} k^m is x*E(m, x)/(1-x)^(m+2), where E(m, x) is the Eulerian polynomial of degree m (cf. A008292). The e.g.f. for these o.g.f.s is: x/(1-x)^2*(exp(y/(1-x))-exp(x*y/(1-x)))/(exp(x*y/(1-x))-x*exp(y/(1-x))). - _Vladeta Jovovic_, May 08 2002 %F A000538 a(n) = Sum_{i = 1..n} J_4(i)*floor(n/i), where J_4 is A059377. - _Enrique Pérez Herrero_, Feb 26 2012 %F A000538 a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24. - _Ant King_, Sep 23 2013 %F A000538 a(n) = -Sum_{j=1..4} j*Stirling1(n+1,n+1-j)*Stirling2(n+4-j,n). - _Mircea Merca_, Jan 25 2014 %F A000538 Sum_{n>=1} (-1)^(n+1)/a(n) = -30*(4 + 3/cos(sqrt(7/3)*Pi/2))*Pi/7. - _Vaclav Kotesovec_, Feb 13 2015 %F A000538 a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + sqrt(7/12))*(n + 1/2 - sqrt(7/12))/5, see the Graham et al. reference, p. 275. - _Wolfdieter Lang_, Apr 02 2015 %p A000538 A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30; %t A000538 Accumulate[Range[0,40]^4] (* _Harvey P. Dale_, Jan 13 2011 *) %t A000538 CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 07 2015 *) %t A000538 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* _Jean-François Alcover_, Feb 09 2016 *) %t A000538 Table[x^5/5+x^4/2+x^3/3-x/30,{x,40}] (* _Harvey P. Dale_, Jun 06 2021 *) %o A000538 (Sage) [bernoulli_polynomial(n,5)/5 for n in range(1, 35)] # _Zerinvary Lajos_, May 17 2009 %o A000538 (Haskell) %o A000538 a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30 %o A000538 -- _Reinhard Zumkeller_, Nov 11 2012 %o A000538 (Maxima) A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$ %o A000538 makelist(A000538(n),n,0,30); /* _Martin Ettl_, Nov 12 2012 */ %o A000538 (PARI) a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ _Charles R Greathouse IV_, Nov 20 2012 %o A000538 (PARI) concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ _Altug Alkan_, Dec 07 2015 %o A000538 (Python) %o A000538 A000538_list, m = [0], [24, -36, 14, -1, 0, 0] %o A000538 for _ in range(10**2): %o A000538 for i in range(5): %o A000538 m[i+1] += m[i] %o A000538 A000538_list.append(m[-1]) # _Chai Wah Wu_, Nov 05 2014 %o A000538 (Python) %o A000538 def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # _Chai Wah Wu_, Oct 03 2024 %o A000538 (Magma) [n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // _Vincenzo Librandi_, Apr 04 2015 %Y A000538 Cf. A000217, A000330, A000537, A000539, A000540, A000541, A000542, A007487, A023002, A064538, A101089. %Y A000538 Row 4 of array A103438. %Y A000538 Cf. A000583. %Y A000538 Cf. A254640. %K A000538 nonn,easy,nice,changed %O A000538 0,3 %A A000538 _N. J. A. Sloane_ %E A000538 The general V. Jovovic formula has been slightly changed after his approval by _Wolfdieter Lang_, Nov 03 2011