This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000543 #44 Feb 16 2025 08:32:21 %S A000543 0,1,23,333,2916,16725,70911,241913,701968,1798281,4173775,8942021, %T A000543 17930628,34009053,61518471,106823025,179003456,290715793,459239463, %U A000543 707740861,1066780100,1576090341,2286660783,3263156073,4586706576 %N A000543 Number of inequivalent ways to color vertices of a cube using at most n colors. %C A000543 Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the vertices has cycle index (x1^8 + 9*x2^4 + 6*x4^2 + 8*x1^2*x3^2)/24. %C A000543 Also the number of ways to color the faces of a regular octahedron with n colors, counting mirror images separately. %C A000543 From _Robert A. Russell_, Oct 08 2020: (Start) %C A000543 Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual. %C A000543 There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube vertex (octahedron face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem. %C A000543 Conjugacy Class Count Even Cycle Indices %C A000543 Identity 1 x_1^8 %C A000543 Vertex rotation 8 x_1^2x_3^2 %C A000543 Edge rotation 6 x_2^4 %C A000543 Small face rotation 6 x_4^2 %C A000543 Large face rotation 3 x_2^4 (End) %D A000543 N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147). %H A000543 Vincenzo Librandi, <a href="/A000543/b000543.txt">Table of n, a(n) for n = 0..1000</a> %H A000543 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolyhedronColoring.html">Polyhedron Coloring</a> %H A000543 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A000543 a(n) = (1/24)*n^2*(n^6+17*n^2+6). (Replace all x_i's in the cycle index with n.) %F A000543 G.f.: x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9. - _Colin Barker_, Jan 29 2012 %F A000543 a(n) = 1*C(n,1) + 21*C(n,2) + 267*C(n,3) + 1718*C(n,4) + 5250*C(n,5) + 7980*C(n,6) + 5880*C(n,7) + 1680*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors. %F A000543 a(n) = A128766(n) + A337896(n) = 2*A128766(n) - A337897(n) = 2*A337896(n) + A337897(n). - _Robert A. Russell_, Oct 08 2020 %p A000543 f:= n->(1/24)*n^2*(n^6+17*n^2+6); seq(f(n), n=0..40); %t A000543 CoefficientList[Series[x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9,{x,0,30}],x] (* _Vincenzo Librandi_, Apr 15 2012 *) %t A000543 Table[(n^8+17n^4+6n^2)/24,{n,0,30}] (* _Robert A. Russell_, Oct 08 2020 *) %o A000543 (Magma) [(1/24)*n^2*(n^6+17*n^2+6): n in [0..30]]; // _Vincenzo Librandi_, Apr 15 2012 %Y A000543 Cf. A128766 (unoriented), A337896 (chiral), A337897 (achiral). %Y A000543 Other elements: A060530 (edges), A047780 (cube faces, octahedron vertices). %Y A000543 Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices). %Y A000543 Row 3 of A325012 (orthotope vertices, orthoplex facets) and A337891 (orthoplex faces, orthotope peaks). %K A000543 nonn,easy %O A000543 0,3 %A A000543 Clint. C. Williams (Clintwill(AT)aol.com) %E A000543 Entry revised by _N. J. A. Sloane_, Jan 03 2005