This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000545 #47 Feb 16 2025 08:32:21 %S A000545 1,96,9099,280832,4073375,36292320,230719293,1145393152,4707296613, %T A000545 16666924000,52307593239,148602435840,388302646355,944900450144, %U A000545 2162441849625,4691253854208,9710376716137,19280531603808,36888593841475,68266682784000,122597146773927 %N A000545 Number of ways of n-coloring a dodecahedron. %C A000545 More explicitly, a(n) is the number of colorings with at most n colors of the faces of a regular dodecahedron, inequivalent under the action of the rotation group of the dodecahedron. It is also the number of inequivalent colorings of the vertices of a regular icosahedron using at most n colors. - _José H. Nieto S._, Jan 19 2012 %C A000545 From _Robert A. Russell_, Oct 03 2020: (Start) %C A000545 Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the dodecahedron face (icosahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem. %C A000545 Conjugacy Class Count Even Cycle Indices %C A000545 Identity 1 x_1^12 %C A000545 Edge rotation 15 x_2^6 %C A000545 Vertex rotation 20 x_3^4 %C A000545 Small face rotation 12 x_1^2x_5^2 %C A000545 Large face rotation 12 x_1^2x_5^2 (End) %H A000545 T. D. Noe, <a href="/A000545/b000545.txt">Table of n, a(n) for n = 1..1000</a> %H A000545 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolyhedronColoring.html">Polyhedron Coloring</a> %H A000545 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1). %F A000545 G.f.: x*((1+x)*(1+x*(82+x*(7847+x*(161900+x*(943640+x*(1764740+x*(943640+x*(161900+x*(7847+x*(82+x)))))))))))/(1-x)^13. - _Harvey P. Dale_, Apr 25 2011 %F A000545 From _Robert A. Russell_, Oct 03 2020: (Start) %F A000545 a(n) = (n^12 + 15*n^6 + 44*n^4) / 60. %F A000545 a(n) = 1*C(n,1) + 94*C(n,2) + 8814*C(n,3) + 245008*C(n,4) + 2759250*C(n,5) + 15884004*C(n,6) + 52701264*C(n,7) + 106866144*C(n,8) + 134719200*C(n,9) + 103118400*C(n,10) + 43908480*C(n,11) + 7983360*C(n,12), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors. %F A000545 a(n) = A252705(n) + A337961(n) = 2*A252705(n) - A337962(n) = 2*A337961(n) + A337962(n). (End) %p A000545 (1/60)*n^12+(1/4)*n^6+(11/15)*n^4; %t A000545 Table[n^12/60+n^6/4+11 n^4/15,{n,20}] (* or *) CoefficientList[Series[ -(((1+x) (1+x (82+x (7847+x (161900+x (943640+x (1764740+x (943640+x (161900+x (7847+x (82+x)))))))))))/(x-1)^13),{x,0,20}],x] (* _Harvey P. Dale_, Apr 25 2011 *) %Y A000545 Cf. A252705 (unoriented), A337961 (chiral), A337962 (achiral). %Y A000545 Other elements: A054472 (dodecahedron vertices, icosahedron faces), A282670 (edges). %Y A000545 Other polyhedra: A006008 (tetrahedron), A047780 (cube faces, octahedron vertices), A000543 (octahedron faces, cube vertices). %K A000545 nonn,easy %O A000545 1,2 %A A000545 Clint. C. Williams (Clintwill(AT)aol.com)