cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000569 Number of graphical partitions of 2n.

This page as a plain text file.
%I A000569 #81 Apr 16 2025 03:03:44
%S A000569 1,2,5,9,17,31,54,90,151,244,387,607,933,1420,2136,3173,4657,6799,
%T A000569 9803,14048,19956,28179,39467,54996,76104,104802,143481,195485,264941,
%U A000569 357635,480408,642723,856398,1136715,1503172,1980785
%N A000569 Number of graphical partitions of 2n.
%C A000569 A partition of n is a sequence p_1, ..., p_k for some k with p_1 >= p_2 >= ... >= p_k and p_1+...+p_k=n. A partition is graphical if it is the degree sequence of a simple graph (this requires that n be even). Some authors set a(0)=1 by convention.
%H A000569 T. D. Noe, <a href="/A000569/b000569.txt">Table of n, a(n) for n = 1..860</a>. [Terms 1 through 110 were computed by Tiffany M. Barnes and Carla D. Savage; terms 111 through 585 were computed by Axel Kohnert; terms 586 to 860 by Wang Kai, Jun 05 2016; a typo of a(547) in <a href="http://www.mathe2.uni-bayreuth.de/axel/numberofgraphicalpartitions.pdf">Number of Graphical Partitions</a> is corrected by Wang Kai, Aug 03 2016]
%H A000569 Tiffany M. Barnes and Carla D. Savage, <a href="http://dx.doi.org/10.1016/S0166-218X(97)00022-X">Efficient generation of graphical partitions</a> Discrete Appl. Math. 78 (1997), no. 1-3, 17-26.
%H A000569 T. M. Barnes and C. D. Savage, <a href="https://doi.org/10.37236/1205">A recurrence for counting graphical partitions</a>, Electronic J. Combinatorics, 2 (1995).
%H A000569 K. Blum, <a href="https://arxiv.org/abs/2103.03196">Bounds on the Number of Graphical Partitions</a>, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
%H A000569 P. Erdős and T. Gallai, <a href="https://users.renyi.hu/~p_erdos/1961-05.pdf">Graphs with a given degree of vertices</a>, Mat. Lapok, 11 (1960), 264-274.
%H A000569 P. Erdős and L. B. Richmond, <a href="https://doi.org/10.1007/BF01202789">On graphical partitions</a> Combinatorica 13 (1993), no. 1, 57-63.
%H A000569 Axel Kohnert, <a href="https://doi.org/10.37236/1845">Dominance Order and Graphical Partitions</a>, Electronic J. Combinatorics, 11 (2004).
%H A000569 Gerard Sierksma and Han Hoogeveen, <a href="http://dx.doi.org/10.1002/jgt.3190150209">Seven criteria for integer sequences being graphic</a>, J. Graph Theory 15 (1991), no. 2, 223-231.
%H A000569 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition.</a>
%H A000569 Gus Wiseman, <a href="/A000569/a000569.png">Simple graphs realizing each of the a(6) = 31 graphical partitions of 12.</a>
%H A000569 <a href="/index/Gra#graph_part">Index entries for sequences related to graphical partitions</a>
%e A000569 a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
%e A000569 From _Gus Wiseman_, Oct 26 2018: (Start)
%e A000569 The a(1) = 1 through a(5) = 17 graphical partitions:
%e A000569   (11)  (211)   (222)     (2222)      (3322)
%e A000569         (1111)  (2211)    (3221)      (22222)
%e A000569                 (3111)    (22211)     (32221)
%e A000569                 (21111)   (32111)     (33211)
%e A000569                 (111111)  (41111)     (42211)
%e A000569                           (221111)    (222211)
%e A000569                           (311111)    (322111)
%e A000569                           (2111111)   (331111)
%e A000569                           (11111111)  (421111)
%e A000569                                       (511111)
%e A000569                                       (2221111)
%e A000569                                       (3211111)
%e A000569                                       (4111111)
%e A000569                                       (22111111)
%e A000569                                       (31111111)
%e A000569                                       (211111111)
%e A000569                                       (1111111111)
%e A000569 (End)
%t A000569 << MathWorld`Graphs`
%t A000569 Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
%t A000569 (* second program *)
%t A000569 prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
%t A000569 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A000569 Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* _Gus Wiseman_, Oct 26 2018 *)
%Y A000569 Cf. A000070, A000219, A004250, A004251, A007717, A025065, A029889, A095268, A096373, A147878, A209816, A320911, A320921, A320922.
%K A000569 nonn,nice
%O A000569 1,2
%A A000569 _N. J. A. Sloane_