A000573 Number of 4 X n normalized Latin rectangles.
4, 56, 6552, 1293216, 420909504, 207624560256, 147174521059584, 143968880078466048, 188237563987982390784, 320510030393570671051776, 695457005987768649183581184, 1888143905499961681708381310976, 6314083806394358817244705266941952, 25655084790196439186603345691314159616
Offset: 4
References
- S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
Links
- Sheng Lin, Xiaoguang Liu and Douglas S. Stones, Gang Wang, Table of n, K(4,n) for n=4..150
- P. G. Doyle, The number of Latin rectangles, arXiv:math/0703896v1 [math.CO], 2007.
- B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
- Douglas Stones, Doyle's formula for the number of reduced 6xn Latin rectangles
- Douglas Stones, Enumeration Of Latin Squares And Rectangles
- D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
- D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
- R. J. Stones, S. Lin, X. Liu, G. Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1.
- Index entries for sequences related to Latin squares and rectangles