This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000603 M2541 N1004 #52 Jul 18 2024 14:29:28 %S A000603 1,3,6,11,17,26,35,45,58,73,90,106,123,146,168,193,216,243,271,302, %T A000603 335,365,402,437,473,516,557,600,642,687,736,782,835,886,941,999,1050, %U A000603 1111,1167,1234,1297,1357,1424,1491,1564,1636,1703,1778,1852,1931,2012,2095 %N A000603 Number of nonnegative solutions to x^2 + y^2 <= n^2. %C A000603 Row sums of triangle A255238. - _Wolfdieter Lang_, Mar 15 2015 %D A000603 H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63. %D A000603 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000603 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000603 T. D. Noe, <a href="/A000603/b000603.txt">Table of n, a(n) for n = 0..1000</a> %F A000603 a(n) = n^2 * Pi/4 + O(n). - _Charles R Greathouse IV_, Apr 03 2013 %F A000603 a(n) = A001182(n) + 2*n + 1. - _R. J. Mathar_, Jan 07 2015 %F A000603 a(n) = 2*A026702(n) - (1 + floor(n/sqrt(2))), n >= 0. - _Wolfdieter Lang_, Mar 15 2015 %F A000603 a(n) = [x^(n^2)] (1 + theta_3(x))^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - _Ilya Gutkovskiy_, Apr 15 2018 %t A000603 Table[cnt = 0; Do[If[x^2 + y^2 <= n^2, cnt++], {x, 0, n}, {y, 0, n}]; cnt, {n, 0, 51}] (* _T. D. Noe_, Apr 02 2013 *) %t A000603 Table[If[n==1,1,2*Sum[Sum[A255195[[n, n - k + 1]], {k, 1, k}], {k, 1, n}] - Ceiling[(n - 1)/Sqrt[2]]],{n,1,52}] (* _Mats Granvik_, Feb 19 2015 *) %o A000603 (Haskell) %o A000603 a000603 n = length [(x,y) | x <- [0..n], y <- [0..n], x^2 + y^2 <= n^2] %o A000603 -- _Reinhard Zumkeller_, Jan 23 2012 %o A000603 (PARI) a(n)=my(n2=n^2);sum(a=0,n,sqrtint(n2-a^2)+1) \\ _Charles R Greathouse IV_, Apr 03 2013 %o A000603 (Python) %o A000603 from math import isqrt %o A000603 def A000603(n): return (m:=n<<1)+sum(isqrt(k*(m-k)) for k in range(1,n))+1 # _Chai Wah Wu_, Jul 18 2024 %Y A000603 Column k=2 of A302998. %Y A000603 Cf. A000328, A036695, A036702, A255238, A255195. %K A000603 nonn %O A000603 0,2 %A A000603 _N. J. A. Sloane_ %E A000603 More terms from _David W. Wilson_, May 22 2000