cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000610 Number of self-complementary Boolean functions of n variables: see Comments for precise definition.

This page as a plain text file.
%I A000610 M1714 N0678 #70 Apr 19 2025 18:05:53
%S A000610 0,1,2,6,42,4094,98210640,148947659711650464,
%T A000610 872404773126414633407736134582136832,
%U A000610 88627167739308536281147085615274891669779458770791192509009429292662497280
%N A000610 Number of self-complementary Boolean functions of n variables: see Comments for precise definition.
%C A000610 Number of self-complementary equivalence classes under the group G_n (a permutation group on the domain of Boolean functions, generated by the symmetric group S_n and the group (C_2)^n of all 2^n complementations of variables). - _R. J. Mathar_, Apr 14 2010
%D A000610 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000610 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000610 B. Elspas, <a href="/A000610/a000610.pdf">Self-complementary symmetry types of Boolean functions</a>,  IEEE Transactions on Electronic Computers 2, no. EC-9 (1960): 264-266. [Annotated scanned copy]
%H A000610 M. A. Harrison, <a href="http://dx.doi.org/10.1109/PGEC.1963.263656">The number of equivalence classes of Boolean functions under groups containing negation</a>, IEEE Trans. Electron. Comput. 12 (1963), 559-561.
%H A000610 M. A. Harrison, <a href="/A000370/a000370.pdf">The number of equivalence classes of Boolean functions under groups containing negation</a>, IEEE Trans. Electron. Comput. 12 (1963), 559-561. [Annotated scanned copy]
%H A000610 E. M. Palmer and R. W. Robinson, <a href="http://projecteuclid.org/euclid.pjm/1102711113">Enumeration of self-dual configurations</a> Pacific J. Math., 110 (1984), 203-221.
%H A000610 I. Toda, <a href="https://doi.org/10.1109/TEC.1962.5219361">On the number of types of self-dual logical functions</a>, IEEE Trans. Electron. Comput., 11 (1962), 282-284.
%H A000610 I. Toda, <a href="/A001531/a001531.pdf">On the number of types of self-dual logical functions</a> (annotated scanned copy)
%H A000610 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>
%F A000610 a(n) = A000370(n) - A317794(n). - _Tilman Piesk_, Apr 14 2025
%o A000610 (Python)
%o A000610 # Using function get_num_equiv_bool_func from A000370.
%o A000610 [get_num_equiv_bool_func(n,True) for n in range(1,10)] # _Gregory Morse_, Dec 23 2024
%Y A000610 Cf. A001320, A000370, A317794.
%K A000610 nonn,nice,easy
%O A000610 0,3
%A A000610 _N. J. A. Sloane_
%E A000610 More terms from _Vladeta Jovovic_, Feb 23 2000
%E A000610 a(0)=0 from _Tilman Piesk_, Apr 15 2025