This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000615 M0379 N0142 N0747 #33 Jun 27 2025 21:46:34 %S A000615 2,2,8,72,1536,86080,14487040,8274797440,17494930604032 %N A000615 Threshold functions of exactly n variables. %D A000615 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 4. %D A000615 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in two entries, N0142 and N0747). %D A000615 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000615 Goto, Eiichi, and Hidetosi Takahasi, <a href="/A000371/a000371_1.pdf">Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions</a>, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages] %H A000615 Alastair D. King, <a href="/A002080/a002080.pdf">Comments on A002080 and related sequences based on threshold functions</a>, Mar 17 2023. %H A000615 S. Muroga, I. Toda and M. Kondo, <a href="https://doi.org/10.1090/S0025-5718-62-99195-0">Majority decision functions of up to six variables</a>, Math. Comp., 16 (1962), 459-472. %H A000615 S. Muroga, I. Toda and M. Kondo, <a href="/A001528/a001528.pdf">Majority decision functions of up to six variables</a>, Math. Comp., 16 (1962), 459-472. [Annotated partially scanned copy] %H A000615 S. Muroga, T. Tsuboi and C. R. Baugh, <a href="https://doi.org/10.1109/T-C.1970.223046">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. %H A000615 S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy] %H A000615 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A000615 A000609(n) = Sum_{k=0..n} a(k)*binomial(n,k). - Alastair D. King, Mar 17 2023. %Y A000615 Cf. A000609. %K A000615 nonn,more %O A000615 0,1 %A A000615 _N. J. A. Sloane_ %E A000615 Entry revised by _N. J. A. Sloane_, Jun 11 2012