This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000617 M0727 N0272 #54 Jun 27 2025 21:46:51 %S A000617 2,3,5,10,27,119,1113,29375,2730166,989913346 %N A000617 Number of NP-equivalence classes of threshold functions of n or fewer variables. %C A000617 From _Fabián Riquelme_, Jun 01 2012: (Start) %C A000617 NP-equivalence classes of threshold functions are equivalent to weighted games, in simple game theory. %C A000617 The number for n=9 was first documented in Tautenhahn's thesis. (End) %D A000617 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 14. %D A000617 S. Muroga, T. Tsuboi, and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. %D A000617 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000617 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A000617 N. Tautenhahn, Enumeration einfacher Spiele mit Anwendungen in der Stimmgewichtsverteilung, 2008. Master's thesis, University of Bayreuth, 269 pages (in German). %H A000617 S. Bolus, <a href="https://macau.uni-kiel.de/receive/diss_mods_00009114">A QOBDD-based Approach to Simple Games</a>, Dissertation, Doktor der Ingenieurwissenschaften der Technischen Fakultaet der Christian-Albrechts-Universitaet zu Kiel, 2012. - From _N. J. A. Sloane_, Dec 22 2012 %H A000617 I. Krohn and P. Sudhölter, <a href="http://dx.doi.org/10.1007/BF01415753">Directed and weighted majority games</a>, Math. Methods Operat. Res. 42 (2) (1995) 189-216, Table 1. %H A000617 S. Kurz, <a href="http://arxiv.org/abs/1103.1445">On minimum sum representations for weighted voting games</a>, arXiv:1103.1445 [math.CO], 2011-2018. %H A000617 S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971 [Annotated scans of a few pages] %H A000617 S. Muroga, T. Tsuboi, and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy] %H A000617 Eda Uyanık, Olivier Sobrie, Vincent Mousseau, and Marc Pirlot, <a href="https://dx.doi.org/10.1016/j.dam.2017.04.010">Enumerating and categorizing positive Boolean functions separable by a k-additive capacity</a>, Discrete Applied Mathematics, Vol. 229, 1 October 2017, p. 17-30. See Table 3. %F A000617 a(n) = Sum_{k=0..n} A000619(k). - Alastair D. King, Oct 26 2023. %Y A000617 Cf. A000619. %K A000617 nonn,hard,more,nice %O A000617 0,1 %A A000617 _N. J. A. Sloane_