This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000628 M0732 N0274 #71 Apr 07 2025 11:59:59 %S A000628 1,1,1,1,2,3,5,11,24,55,136,345,900,2412,6563,18127,50699,143255, %T A000628 408429,1173770,3396844,9892302,28972080,85289390,252260276,749329719, %U A000628 2234695030,6688893605,20089296554,60526543480,182896187256,554188210352,1683557607211,5126819371356,15647855317080,47862049187447,146691564302648,450451875783866,1385724615285949 %N A000628 Number of n-node unrooted steric quartic trees; number of n-carbon alkanes C(n)H(2n+2) taking stereoisomers into account. %C A000628 Trees are unrooted; nodes are unlabeled and have degree <= 4. %C A000628 Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A000602 for the analogous sequence when stereoisomers are not counted as different. %C A000628 Has also been described as steric planted trees (paraffins) with n nodes. %D A000628 F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290. %D A000628 R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281. %D A000628 J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005. %D A000628 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000628 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000628 Charles M. Blair and Henry R. Henze, <a href="http://dx.doi.org/10.1021/ja01343a044">The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons</a>, J. Amer. Chem. Soc., 54 (1932), 1538-1545. %H A000628 Charles M. Blair and Henry R. Henze, <a href="/A000626/a000626.pdf">The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons</a>, J. Amer. Chem. Soc., 54 (4) (1932), 1538-1545. (Annotated scanned copy) %H A000628 L. Bytautats and D. J. Klein, <a href="https://doi.org/10.1021/ci990021g">Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions</a>, J. Chem. Inf. Comput. Sci 39 (1999) 803-818, Table 1. %H A000628 Lorentz Jäntschi and Lavinia-Lorena Pruteanu, <a href="https://www.carpathian.cunbm.utcluj.ro/article/geometry-of-c32-cyclic-polyyne-and-some-of-its-clusters/">Geometry of C_32 cyclic polyyne and some of its clusters</a>, Carpathian J. Math. (2025) Vol. 41, No. 2, 371-391. See p. 371. %H A000628 Pierre Leroux and Brahim Miloudi, <a href="http://www.labmath.uqam.ca/~annales/volumes/16-1/PDF/053-080.pdf">Généralisations de la formule d'Otter</a>, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. %H A000628 Pierre Leroux and Brahim Miloudi, <a href="/A000081/a000081_2.pdf">Généralisations de la formule d'Otter</a>, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy) %H A000628 R. C. Read, <a href="/A000598/a000598.pdf">The Enumeration of Acyclic Chemical Compounds</a>, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 44. %H A000628 R. W. Robinson, F. Harary and A. T. Balaban, <a href="http://dx.doi.org/10.1016/0040-4020(76)80049-X">The numbers of chiral and achiral alkanes and monosubstituted alkanes</a>, Tetrahedron 32 (1976), 355-361. %H A000628 R. W. Robinson, F. Harary and A. T. Balaban, <a href="/A000625/a000625.pdf">Numbers of chiral and achiral alkanes and monosubstituted alkanes</a>, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy) %H A000628 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %H A000628 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A000628 Blair and Henze give recurrence (see the Maple code). %F A000628 For even n a(n) = A086194(n) + A086200(n/2), for odd n a(n) = A086194(n). %p A000628 s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 0 to 60 do s[n+1/4]:=0 od:for n from 0 to 60 do s[n+1/2]:=0 od:for n from 0 to 60 do s[n+3/4]:=0 od:s[ -1]:=0:for n from 1 to 50 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od:for n from 0 to 50 do q[n]:=sum(s[i]*s[n-i],i=0..n) od:for n from 0 to 50 do q[n-1/2]:=0 od:for n from 0 to 40 do f:=n->(3*s[n]+2*s[n/2]+q[(n-1)/2]-q[n]+2*sum(s[j]*s[n-3*j-1],j=0..n/3))/4 od:seq(f(n),n=0..38); # the formulas for s[n+1] and f(n) are from eq.(4) and (12), respectively, of the Robinson et al. paper; s[n]=A000625(n), f(n)=A000628(n); q[n] is the convolution of s[n] with itself; # _Emeric Deutsch_ %t A000628 max = 40; s[0] = s[1] = 1; s[_] = 0; For[n=1, n <= max, n++, s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n]; For[n=0, n <= max, n++, q[n] = Sum[s[i]*s[n-i], {i, 0, n}]]; For[n=0, n <= max, n++, q[n-1/2]=0]; f[n_] := (3*s[n] + 2*s[n/2] + q[(n-1)/2] - q[n] + 2*Sum[s[j]*s[n-3*j-1], {j, 0, n/3}])/4; Table[f[n], {n, 0, max}] (* _Jean-François Alcover_, Dec 29 2014, after _Emeric Deutsch_ *) %Y A000628 Equals A000626 + A000627. %Y A000628 Cf. A000598, A000602, A000625, A010372, A010373, A086194, A086200. %K A000628 nonn,easy,nice %O A000628 0,5 %A A000628 _N. J. A. Sloane_ %E A000628 Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003 %E A000628 More terms from _Emeric Deutsch_, May 16 2004