cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000636 Number of paraffins C_n H_{2n} X_2 with n carbon atoms.

This page as a plain text file.
%I A000636 M1185 N0457 #28 Jan 29 2022 00:59:56
%S A000636 1,2,4,9,21,52,129,332,859,2261,5983,15976,42836,115469,312246,847241,
%T A000636 2304522,6283327,17164401,46972357,128741107,353345434,970999198,
%U A000636 2671347292,7356752678,20279171785,55948407837,154479213626,426845422807,1180229767202
%N A000636 Number of paraffins C_n H_{2n} X_2 with n carbon atoms.
%D A000636 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000636 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000636 H. R. Henze and C. M. Blair, <a href="http://dx.doi.org/10.1021/ja01316a050">The number of structural isomers of the more important types of aliphatic compounds</a>, J. Amer. Chem. Soc., 56 (1) (1934), 157-157.
%H A000636 H. R. Henze and C. M. Blair, <a href="/A000632/a000632.pdf">The number of structural isomers of the more important types of aliphatic compounds</a>, J. Amer. Chem. Soc., 56 (1) (1934), 157-157. (Annotated scanned copy)
%H A000636 G. Polya, <a href="http://dx.doi.org/10.1524/zkri.1936.93.1.415">Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen</a>, Zeit. f. Kristall., 93 (1936), 415-443; line 4 of Table I.
%H A000636 G. Polya, <a href="/A000598/a000598_3.pdf">Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen</a>,  Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 2. (Annotated scanned copy)
%H A000636 R. C. Read, <a href="/A000598/a000598.pdf">The Enumeration of Acyclic Chemical Compounds</a>, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 28.
%F A000636 G.f.: (1/2) * (1/(1-x*R(x)) + (1+x*R(x)) / (1-x^2*R(x^2))) where R(x) is the g.f. for A000642 [From Polya paper]. - _Sean A. Irvine_, Oct 04 2016
%K A000636 nonn,easy,nice
%O A000636 1,2
%A A000636 _N. J. A. Sloane_
%E A000636 More terms from _Sean A. Irvine_, Oct 04 2016