cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000657 Median Euler numbers (the middle numbers of Arnold's shuttle triangle).

This page as a plain text file.
%I A000657 #94 Nov 24 2024 17:11:17
%S A000657 1,1,4,46,1024,36976,1965664,144361456,13997185024,1731678144256,
%T A000657 266182076161024,49763143319190016,11118629668610842624,
%U A000657 2925890822304510631936,895658946905031792553984,315558279782214450517374976,126780706777739389745128013824
%N A000657 Median Euler numbers (the middle numbers of Arnold's shuttle triangle).
%C A000657 Also central terms of the triangle in A008280. - _Reinhard Zumkeller_, Nov 01 2013
%C A000657 Conjecture: taking the sequence modulo an integer k gives an eventually purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 1, 4, 1, 7, 4, 1, 7, 4, 1, 7, ...] with an apparent period [4, 1, 7] of length 3 = phi(9)/2 beginning at a(2). - _Peter Bala_, May 08 2023
%D A000657 V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
%D A000657 L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
%H A000657 Vincenzo Librandi, <a href="/A000657/b000657.txt">Table of n, a(n) for n = 0..200</a>
%H A000657 V. I. Arnold, <a href="http://mi.mathnet.ru/eng/umn4470">The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups</a>, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
%H A000657 Ange Bigeni and Evgeny Feigin, <a href="https://arxiv.org/abs/1808.04275">Symmetric Dellac configurations</a>, arXiv:1808.04275 [math.CO], 2018.
%H A000657 D. Dumont, <a href="http://dx.doi.org/10.1006/aama.1995.1014">Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers</a>, Adv. Appl. Math., 16 (1995), 275-296.
%H A000657 A. Randrianarivony and J. Zeng, <a href="http://dx.doi.org/10.1006/aama.1996.0001">Une famille de polynomes qui interpole plusieurs suites...</a>, Adv. Appl. Math. 17 (1996), 1-26.
%F A000657 Row sums of triangle, read by rows, [0, 1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 2, 6, 5, 11, 8, 16, 11, 21, 14, ...] where DELTA is Deléham's operator defined in A084938.
%F A000657 G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-1*1x/(1-1*3x/(1-2*5x/(1-2*7x/(1-3*9x/...))))). - _Ralf Stephan_, Sep 09 2004
%F A000657 G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+4*k+1) - x^2*(k+1)^2*(4*k+1)*(4*k+3)/G(k+1); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Feb 05 2013
%F A000657 G.f.: G(0)/(1-x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 - x*(8*k^2+4*k+1))*(1 - x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Feb 01 2014
%F A000657 a(n) = (-1)^(n)*Sum_{k=0..n} C(n,k)*Euler(n+k). - _Vladimir Kruchinin_, Apr 06 2015
%F A000657 a(n) ~ 2^(4*n+5/2) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - _Vaclav Kotesovec_, Apr 06 2015
%F A000657 Conjectural e.g.f. as a continued fraction: 1/(1 - (1 - exp(-2*t))/(2 - (1 - exp(-4*t))/(1 - (1 - exp(-6*t))/(2 - (1 - exp(-8*t))/(1 - ... )))) = 1 + t + 4*t^2/2! + 46*t^3/3! + .... Cf. A005799. - _Peter Bala_, Dec 26 2019
%p A000657 Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
%p A000657 # Alternatively after _Alois P. Heinz_ in A000111:
%p A000657 b := proc(u, o) option remember;
%p A000657 `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
%p A000657 a := n -> b(n, n): seq(a(n), n = 0..15); # _Peter Luschny_, Oct 27 2017
%t A000657 max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* _Jean-François Alcover_, Jul 10 2012, after Maple *)
%t A000657 T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* _Oliver Seipel_, Nov 24 2024, after _Peter Luschny_ *)
%o A000657 (Sage) # Algorithm of L. Seidel (1877)
%o A000657 def A000657_list(n) :
%o A000657     R = []; A = {-1:0, 0:1}
%o A000657     k = 0; e = 1
%o A000657     for i in (0..n) :
%o A000657         Am = 0; A[k + e] = 0; e = -e
%o A000657         for j in (0..i) :
%o A000657             Am += A[k]; A[k] = Am; k += e
%o A000657         if e < 0 :
%o A000657             R.append(A[0])
%o A000657     return R
%o A000657 A000657_list(30)  # Peter Luschny, Apr 02 2012
%o A000657 (Haskell)
%o A000657 a000657 n = a008280 (2 * n) n  -- _Reinhard Zumkeller_, Nov 01 2013
%o A000657 (Maxima)
%o A000657 a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* _Vladimir Kruchinin_, Apr 06 2015 */
%Y A000657 Cf. A084938, A002832. For a signed version see A099023.
%Y A000657 Related polynomials in A098277.
%Y A000657 A diagonal of A323834.
%Y A000657 Cf. A005799.
%K A000657 nonn,nice,easy
%O A000657 0,3
%A A000657 _N. J. A. Sloane_, _Don Knuth_
%E A000657 More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
%E A000657 Corrected by _Sean A. Irvine_, Dec 22 2010