cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000661 Shifts 2 places left under boustrophedon transform.

Original entry on oeis.org

1, 0, 1, 1, 2, 6, 17, 62, 259, 1230, 6592, 39313, 258575, 1860318, 14538245, 122670593, 1111715644, 10771412394, 111125142979, 1216309735378, 14078811306851, 171837279141312, 2205768169095338, 29707098687614285
Offset: 0

Views

Author

Keywords

References

  • G. W. Hill, Acta Mathematica, VIII (1886).

Programs

  • Mathematica
    nmax = 30; sectan = Normal[Series[Sec[x] + Tan[x], {x, 0, nmax+1}]]; Subscript[a,0]=1; Subscript[a,1]=0; egf = Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[ sectan*egf - D[egf,{x,2}]],x], nmax-1] == ConstantArray[0, nmax-1]][[1]] (* Vaclav Kotesovec, Jun 12 2015 *)

Formula

E.g.f. satisfies: A''(x) - (sec(x)+tan(x))*A(x) = 0 [G. W. Hill, 1886]. - Sergei N. Gladkovskii, Jun 12 2015
a(n) ~ n! * c * 2^n / (n^2 * Pi^n), where c = 21.874759697041762375842937403900898702204499795794357035182354071514... . - Vaclav Kotesovec, Jun 12 2015