cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000678 Number of carbon (rooted) trees with n carbon atoms = unordered 4-tuples of ternary trees.

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 18, 42, 96, 229, 549, 1347, 3326, 8330, 21000, 53407, 136639, 351757, 909962, 2365146, 6172068, 16166991, 42488077, 112004630, 296080425, 784688263, 2084521232, 5549613097, 14804572332, 39568107511, 105938822149
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Examples

			z+z^2+2*z^3+4*z^4+9*z^5+18*z^6+42*z^7+...
		

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 454).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 527.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    Let T_i(z) = g.f. for ternary trees of height at most i.
    N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: # G000598 = g.f. for A000598
    i := 0: while iA000678 := n->coeff(G000678,z,n); # G000678 = g.f. for A000678.
    (this Maple program continues in A000022.)
  • Mathematica
    m = 45; (* T = G000598 *) T[] = 0; Do[T[z] = 1 + z*(T[z]^3/6 + T[z^2]*T[z]/2 + T[z^3]/3) + O[z]^m // Normal, m];
    G000678[z_] = z*(T[z]^4/24 + T[z^2]*T[z]^2/4 + T[z^2]^2/8 + T[z]*T[z^3]/3 + T[z^4]/4) + O[z]^m;
    CoefficientList[G000678[z], z] (* Jean-François Alcover, Jan 11 2018, after N. J. A. Sloane *)

Formula

G.f.: A(x) = x*cycle_index(S4, B(x)), B(x) = g.f. for A000598.