This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000687 #42 May 04 2024 05:31:52 %S A000687 1,1,2,6,17,59,229,1029,5242,30040,191201,1338897,10228097,84647981, %T A000687 754437958,7204350870,73382899597,794189092567,9100736472725, %U A000687 110080467183393,1401588037032782,18737851806495008,262435512896178877 %N A000687 Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,5,... %H A000687 John Cerkan, <a href="/A000687/b000687.txt">Table of n, a(n) for n = 0..482</a> %H A000687 C. A. Church and M. Bicknell, <a href="https://www.mathstat.dal.ca/FQ/Scanned/11-3/church.pdf">Exponential generating functions for Fibonacci identities</a>, Fibonacci Quarterly, 11(3) (1973), 275-281. %H A000687 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A000687 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A000687 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A000687 E.g.f.: (sec(x) + tan(x))*(((exp(a*x) - 1)/a - (exp(b*x) - 1)/b)/(a - b) + 1), where a = (1 + sqrt(5))/2 and b = (1 - sqrt(5))/2. - _Petros Hadjicostas_, Feb 16 2021 %e A000687 From _John Cerkan_, Jan 25 2017: (Start) %e A000687 The array begins: %e A000687 1 %e A000687 0 -> 1 %e A000687 2 <- 2 <- 1 %e A000687 1 -> 3 -> 5 -> 6 %e A000687 17 <- 16 <- 13 <- 8 <- 2 (End) %p A000687 read(transforms); %p A000687 with(combinat): %p A000687 F:=fibonacci; %p A000687 [seq(F(n),n=0..50)]; %p A000687 BOUS(%); %Y A000687 Cf. A000045, A000738, A092073, A000744. %K A000687 nonn %O A000687 0,3 %A A000687 _N. J. A. Sloane_ and _Simon Plouffe_ %E A000687 Entry revised by _N. J. A. Sloane_, Mar 15 2011