cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000713 EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...

This page as a plain text file.
%I A000713 M2731 N1096 #60 Sep 25 2023 14:26:38
%S A000713 1,3,8,18,38,74,139,249,434,734,1215,1967,3132,4902,7567,11523,17345,
%T A000713 25815,38045,55535,80377,115379,164389,232539,326774,456286,633373,
%U A000713 874213,1200228,1639418,2228546,3015360,4062065,5448995,7280060,9688718,12846507,16972577
%N A000713 EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...
%C A000713 Equals row sums of triangle A146023. - _Gary W. Adamson_, Oct 26 2008
%C A000713 Partial sums of A000712. - _Geoffrey Critzer_, Apr 19 2012, corrected by _Omar E. Pol_, Jun 19 2012
%C A000713 Equals the number of partitions of n with 1's of three kinds and all parts >1 of two kinds. - _Gregory L. Simay_, Mar 25 2018
%D A000713 H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
%D A000713 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A000713 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A000713 T. D. Noe, <a href="/A000713/b000713.txt">Table of n, a(n) for n = 0..1000</a>
%H A000713 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=390">Encyclopedia of Combinatorial Structures 390</a>
%H A000713 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A000713 G.f.: A(x)/(1-x) where A(x) is g.f. for A000712. - _Geoffrey Critzer_, Apr 19 2012.
%F A000713 From _Vaclav Kotesovec_, Aug 16 2015: (Start)
%F A000713 a(n) ~ sqrt(3*n)/Pi * A000712(n).
%F A000713 a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*Pi*3^(1/4)*n^(3/4)).
%F A000713 (End)
%F A000713 G.f.: exp(Sum_{k>=1} (2*sigma_1(k) + 1)*x^k/k). - _Ilya Gutkovskiy_, Aug 21 2018
%p A000713 with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<2,3,2)): seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 08 2008
%t A000713 nn=20; g=Product[1/(1-x^i), {i,1,nn}]; c=1/(1-x); CoefficientList[Series[g^2/(1-x), {x,0,nn}], x] (* _Geoffrey Critzer_, Apr 19 2012 *)
%o A000713 (PARI) x='x+O('x^66); Vec(1/((1-x)*eta(x)^2)) \\ _Joerg Arndt_, May 01 2013
%o A000713 (Python)
%o A000713 from functools import lru_cache
%o A000713 from sympy import divisor_sigma
%o A000713 @lru_cache(maxsize=None)
%o A000713 def A000713(n): return sum(A000713(k)*((divisor_sigma(n-k)<<1)+1) for k in range(n))//n if n else 1 # _Chai Wah Wu_, Sep 25 2023
%Y A000713 Cf. A000041, A000716.
%Y A000713 Row sums of triangle A093010.
%Y A000713 Cf. A146023. - _Gary W. Adamson_, Oct 26 2008
%K A000713 nonn
%O A000713 0,2
%A A000713 _N. J. A. Sloane_
%E A000713 Extended with formula from _Christian G. Bower_, Apr 15 1998
%E A000713 Definition changed by _N. J. A. Sloane_, Aug 15 2006