This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000717 M2599 N1027 #37 Apr 24 2024 13:15:25 %S A000717 1,1,1,3,6,24,148,1646,34040,1358852,106321628,16006173014, %T A000717 4525920859198,2404130854745735,2426376196165902704, %U A000717 4648429222263945620900,16788801124652327714275292,114722035311851620271616102401 %N A000717 Number of graphs with n nodes and floor(n(n-1)/4) edges. %C A000717 This is the largest number of graphs with n vertices that all have the same number of edges. a(n) <= A371161(n). - _Allan Bickle_, Apr 18 2024 %D A000717 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146. %D A000717 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000717 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000717 Sean A. Irvine, <a href="/A000717/b000717.txt">Table of n, a(n) for n = 1..40</a> %H A000717 M. L. Stein and P. R. Stein, <a href="http://dx.doi.org/10.2172/4180737">Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points</a>. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967 %e A000717 There are three graphs with 4 vertices and 3 edges, K_3 U K_1, K_{1,3}, and P_4, so a(4) = 3. - _Allan Bickle_, Apr 18 2024 %Y A000717 Cf. A008406, A371161. %K A000717 nonn,nice %O A000717 1,4 %A A000717 _N. J. A. Sloane_ %E A000717 More terms from _Sean A. Irvine_, Mar 10 2011