This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000718 #42 Jun 11 2022 15:33:44 %S A000718 1,2,6,20,65,226,883,3947,20089,115036,732171,5126901,39165917, %T A000718 324138010,2888934623,27587288507,281001801969,3041152133848, %U A000718 34849036364659,421526126267265,5367037330561365,71752003756908550 %N A000718 Boustrophedon transform of triangular numbers 1,1,3,6,10,... %H A000718 Reinhard Zumkeller, <a href="/A000718/b000718.txt">Table of n, a(n) for n = 0..400</a> %H A000718 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a> %H A000718 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>). %H A000718 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %H A000718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>. %H A000718 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A000718 E.g.f.: (sec(x) + tan(x))*(exp(x)*(x + 1/2*x^2) + 1). - _Sergei N. Gladkovskii_, Oct 30 2014 %F A000718 a(n) ~ n! * (8 + exp(Pi/2)*Pi*(4+Pi)) * 2^(n-1) / Pi^(n+1). - _Vaclav Kotesovec_, Jun 12 2015 %t A000718 t[n_, 0] := If[n == 0, 1, n*(n+1)/2]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *) %o A000718 (Haskell) %o A000718 a000718 n = sum $ zipWith (*) (a109449_row n) (1 : tail a000217_list) %o A000718 -- _Reinhard Zumkeller_, Nov 04 2013 %o A000718 (Python) %o A000718 from itertools import accumulate, count, islice %o A000718 def A000718_gen(): # generator of terms %o A000718 yield 1 %o A000718 blist, c = (1,), 1 %o A000718 for i in count(2): %o A000718 yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1] %o A000718 c += i %o A000718 A000718_list = list(islice(A000718_gen(),30)) # _Chai Wah Wu_, Jun 11 2022 %Y A000718 Cf. A109449, A000217, A000746. %K A000718 nonn %O A000718 0,2 %A A000718 _N. J. A. Sloane_, _Simon Plouffe_