A000722 Number of invertible Boolean functions of n variables: a(n) = (2^n)!.
1, 2, 24, 40320, 20922789888000, 263130836933693530167218012160000000, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Delbert L. Johnson, Table of n, a(n) for n = 0..8
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for sequences related to Boolean functions
Programs
-
Mathematica
a[n_] := Factorial[2^n]; Table[a[n],{n,0,6}] (* James C. McMahon, Dec 06 2023 *)
-
PARI
atonfact(a,n) = {sr=0; for(x=1,n, y =(a^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) }
Formula
a(n) = (2^n)!.
Sum of reciprocals = 0.54169146825401604874... - Cino Hilliard, Feb 08 2003
Comments