This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A000728 M3742 N1529 #38 Feb 01 2022 01:10:53 %S A000728 1,-5,5,10,-15,-6,-5,25,15,-20,9,-45,-5,25,20,10,15,20,-50,-35,-30,55, %T A000728 -50,15,80,1,50,-35,-45,-15,5,-50,-25,-55,85,51,50,10,-40,65,10,-10, %U A000728 -115,50,-115,-100,85,80,-30,5,20,45,70,65,45,-55,-100 %N A000728 Expansion of Product_{n>=1} (1-x^n)^5. %D A000728 Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. %D A000728 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A000728 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A000728 Seiichi Manyama, <a href="/A000728/b000728.txt">Table of n, a(n) for n = 0..10000</a> %H A000728 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071) %H A000728 M. Newman, <a href="/A000727/a000727.pdf">A table of the coefficients of the powers of eta(tau)</a>, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy] %H A000728 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %F A000728 a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 26 2017 %F A000728 G.f.: exp(-5*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018 %t A000728 CoefficientList[QPochhammer[x]^5 + O[x]^60, x] (* _Jean-François Alcover_, Feb 10 2016 *) %Y A000728 Cf. A258405. %K A000728 sign %O A000728 0,2 %A A000728 _N. J. A. Sloane_